skip to main content


Title: Enhanced Feedback between Shallow Convection and Low-Level Moisture Convergence Leads to Improved Simulation of MJO Eastward Propagation
Abstract Recent study indicates that the non-instantaneous interaction of convection and circulation is essential for evolution of large-scale convective systems. It is incorporated into cumulus parameterization (CP) by relating cloud-base mass flux of shallow convection to a composite of subcloud moisture convergence in the past 6 h. Three pairs of 19-yr simulations with original and modified CP schemes are conducted in a tropical channel model to verify their ability to reproduce the Madden–Julian oscillation (MJO). More coherent tropical precipitation and improved eastward propagation signal are observed in the simulations with the modified CP schemes based on the non-instantaneous interaction. It is found that enhanced feedback between shallow convection and low-level moisture convergence results in amplified shallow convective heating, and then generates reinforced moisture convergence, which transports more moisture upward. The improved simulations of eastward propagation of the MJO are largely attributed to higher specific humidity below 600 hPa in the free troposphere to the east of maximum rainfall center, which is related to stronger boundary layer moisture convergence forced by shallow convection. Large-scale horizontal advection causes asymmetric moisture tendencies relative to rainfall center (positive to the east and negative to the west) and also gives rise to eastward propagation. The zonal advection, especially the advection of anomalous specific humidity by mean zonal wind, is found to dominate the difference of horizontal advection between each pair of simulations. The results indicate the vital importance of non-instantaneous feedback between shallow convection and moisture convergence for convection organization and the eastward MJO propagation.  more » « less
Award ID(s):
1723300
NSF-PAR ID:
10316088
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
2
ISSN:
0894-8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The response of the Madden‐Julian oscillation (MJO) to ocean feedbacks is studied with coupled and uncoupled simulations of four general circulation models (GCMs). Monthly mean sea surface temperature (SST) from each coupled model is prescribed to its respective uncoupled simulation, to ensure identical SST mean‐state and low‐frequency variability between simulation pairs. Consistent with previous studies, coupling improves each model's ability to propagate MJO convection beyond the Maritime Continent. Analysis of the MJO moist static energy budget reveals that improved MJO eastward propagation in all four coupled models arises from enhanced meridional advection of column water vapor (CWV). Despite the identical mean‐state SST in each coupled and uncoupled simulation pair, coupling increases mean‐state CWV near the equator, sharpening equatorward moisture gradients and enhancing meridional moisture advection and MJO propagation. CWV composites during MJO and non‐MJO periods demonstrate that the MJO itself does not cause enhanced moisture gradients. Instead, analysis of low‐level subgrid‐scale moistening conditioned by rainfall rate (R) and SST anomaly reveals that coupling enhances low‐level convective moistening forR> 5 mm day−1; this enhancement is most prominent near the equator. The low‐level moistening process varies among the four models, which we interpret in terms of their ocean model configurations, cumulus parameterizations, and sensitivities of convection to column relative humidity.

     
    more » « less
  2. Abstract Linearized wave solutions on the equatorial beta plane are examined in the presence of a background meridional moisture gradient. Of interest is a slow, eastward-propagating n = 1 mode that is unstable at planetary scales and only exists for a small range of zonal wavenumbers ( ). The mode dispersion curve appears as an eastward extension of the westward-propagating equatorial Rossby wave solution. This mode is therefore termed the eastward-propagating equatorial Rossby wave (ERW). The zonal wavenumber-2 ERW horizontal structure consists of a low-level equatorial convergence center flanked by quadrupole off-equatorial gyres, and resembles the horizontal structure of the observed MJO. An analytic, leading-order dispersion relationship for the ERW shows that meridional moisture advection imparts eastward propagation, and that the smallness of a gross moist stability–like parameter contributes to the slow phase speed. The ERW is unstable near planetary scales when low-level easterlies moisten the column. This moistening could come from either zonal moisture advection or surface fluxes or a combination thereof. When westerlies instead moisten the column, the ERW is damped and the westward-propagating long Rossby wave is unstable. The ERW does not exist when the meridional moisture gradient is too weak. A moist static energy budget analysis shows that the ERW scale selection is partly due to finite-time-scale convective adjustment and less effective zonal wind–induced moistening at smaller scales. Similarities in the phase speed, preferred scale, and horizontal structure suggest that the ERW is a beta-plane analog of the MJO. 
    more » « less
  3. The two-way interaction between Madden–Julian oscillation (MJO) and higher-frequency waves (HFW) over the Maritime Continent (MC) during boreal winter of 1984–2005 is investigated. It is noted from observational analysis that strengthened (weakened) HFW activity appears to the west (east) of and under MJO convection during the MJO active phase and the opposite is seen during the MJO suppressed phase. Sensitivity model experiments indicate that the control of HFW activity by MJO is through change of the background vertical wind shear and specific humidity. The upscale feedbacks from HFW to MJO through nonlinear rectification of condensational heating and eddy momentum transport are also investigated with observational data. A significantly large amount (25%–40%) of positive heating anomaly ([Formula: see text]) at low levels to the east of MJO convection is contributed by nonlinear rectification of HFW. This nonlinear rectification is primarily attributed to eddy meridional moisture advection. A momentum budget diagnosis reveals that 60% of MJO zonal wind tendency at 850 hPa is attributed to the nonlinear interaction of HFW with other scale flows. Among them, the largest contribution arises from eddy zonal momentum flux divergence [Formula: see text]. Easterly (westerly) vertical shear to the west (east) of MJO convection during the MJO active phase causes the strengthening (weakening) of the HFW zonal wind anomaly. This leads to the increase (decrease) of eddy momentum flux activity to the east (west) of the MJO convection, which causes a positive (negative) eddy zonal momentum flux divergence in the zonal wind transitional region during the MJO active (suppressed) phase, favoring the eastward propagation of the MJO. 
    more » « less
  4. Abstract

    The Tibetan Plateau (TP) and Himalayas have been treated as an essential external factor in shaping Asian monsoon and mid-latitude atmospheric circulation. In this study we perform numerical experiments with different uplift altitudes using the Nanjing University of Information Science and Technology Earth System Model to examine potential impacts of uplift of the TP and Himalayas on eastward propagation of the MJO and the associated mechanisms. Analysis of experimental results with dynamics-based MJO diagnostics indicates two potential mechanisms. First, the uplift considerably enhances low-level mean westerlies in the Indian Ocean and convection in the Maritime Continent, which in turn strengthens boundary layer moisture convergence (BLMC) to the east of the MJO convective center. The increased BLMC reinforces upward transport of moisture and heat from BL to free atmosphere and increases lower tropospheric diabatic heating by shallow and congestus clouds ahead of the MJO center, enhancing the Kelvin-Rossby wave feedback. Second, the uplift increases upper tropospheric mean easterlies and stratiform heating at the west of the MJO center, which contributes to eastward propagation of MJO by generating positive moist static energy at the east of MJO center. This study will contribute to a better understanding of the origin of the MJO and improvement in simulation of MJO propagation.

     
    more » « less
  5. Although the tropical intraseaonal variability (TISV), as the most important predictability sources for subseasonal-to-seasonal (S2S) prediction, is dominated by Madden-Julian oscillation (MJO), its significant fraction does not always share the canonical MJO features, especially when the convective activity arrives at Maritime Continent. In this study, using principal oscillation pattern (POP) analysis on the combined fields of daily equatorial convection and zonal wind, two distinct leading TISV modes with relatively slower e-folding decay rates are identified. One is an oscillatory mode with the period of 51 days and e-folding time of 19 days, capturing the eastward propagating (EP) feature of the canonical MJO. The other is a non-oscillatory damping mode with e-folding time of 13.6 days, capturing a standing dipole (SD) with convection anomalies centered over the Maritime Continent and tropical central Pacific, respectively. Compared to the EP mode, the leading moisture anomalies at low level to the east of convection center are diminish for the SD mode, and instead, the strong negative anomalies of moisture and subsidence motion emerge in the tropical central Pacific area, which may be responsible for the distinct propagation features. Without filtering methods used, timeseries of the two POPs could be applied to the real-time monitoring of EP and SD events in the phase-space diagram. The two modes can serve as the simple and objective approach for a better characterization for diverse natures of TISV beyond the canonical MJO description, which may further shed light on dynamics of the TISV and its predictability. 
    more » « less