skip to main content


Title: How Important Are Horizontal Eddy Moisture Transports for the MJO's Eastward Propagation?
Abstract

The eastward propagation of the Madden‐Julian oscillation (MJO) is known to hinge crucially on the effects of horizontal moisture advection, which involve two main types of circulation anomalies. The first are those of the MJO itself, while the second are those of embedded Rossby‐type “eddies,” which tend to be most active to the west of the MJO's convective center. To quantify the relative importance of the eddies, a novel approach is taken in which their formal definition is given by the residual of a least‐squares fit to an observed bivariate MJO index. Results show that the eddies, when defined in this way, are generally of leading importance for fostering the MJO's eastward propagation in terms of column‐integrated moisture. The picture is seen to be reversed, however, when using a traditional filter‐based method to define the eddies, which are then strictly “high‐frequency” in nature.

 
more » « less
Award ID(s):
1839741
NSF-PAR ID:
10427966
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Teleconnections from the Madden–Julian Oscillation (MJO) are a key source of predictability of weather on the extended timescale of about 10–40 d. The MJO teleconnection is sensitive to a number of factors, including the mean dry static stability, the mean flow, and the propagation and intensity characteristics of the MJO, which are traditionally difficult to separate across models. Each of these factors may evolve in response to increasing greenhouse gas emissions, which will impact MJO teleconnections and potentially impact predictability on extended timescales. Current state-of-the-art climate models do not agree on how MJO teleconnections over central and eastern North America will change in a future climate. Here, we use results from the Coupled Model Intercomparison Project Phase 6 (CMIP6) historical and SSP585 experiments in concert with a linear baroclinic model (LBM) to separate and investigate alternate mechanisms explaining why and how boreal winter (January) MJO teleconnections over the North Pacific and North America may change in a future climate and to identify key sources of inter-model uncertainty. LBM simulations suggest that a weakening teleconnection due to increases in tropical dry static stability alone is robust across CMIP6 models and that uncertainty in mean state winds is a key driver of uncertainty in future MJO teleconnections. Uncertainty in future changes to the MJO's intensity, eastward propagation speed, zonal wavenumber, and eastward propagation extent are other important sources of uncertainty in future MJO teleconnections. We find no systematic relationship between future changes in the Rossby wave source and the MJO teleconnection or between changes to the zonal wind or stationary Rossby wave number and the MJO teleconnection over the North Pacific and North America. LBM simulations suggest a reduction of the boreal winter MJO teleconnection over the North Pacific and an uncertain change over North America, with large spread over both regions that lends to weak confidence in the overall outlook. While quantitatively determining the relative importance of MJO versus mean state uncertainties in determining future teleconnections remains a challenge, the LBM simulations suggest that uncertainty in the mean state winds is a larger contributor to the uncertainty in future projections of the MJO teleconnection than the MJO. 
    more » « less
  2. Abstract Recent study indicates that the non-instantaneous interaction of convection and circulation is essential for evolution of large-scale convective systems. It is incorporated into cumulus parameterization (CP) by relating cloud-base mass flux of shallow convection to a composite of subcloud moisture convergence in the past 6 h. Three pairs of 19-yr simulations with original and modified CP schemes are conducted in a tropical channel model to verify their ability to reproduce the Madden–Julian oscillation (MJO). More coherent tropical precipitation and improved eastward propagation signal are observed in the simulations with the modified CP schemes based on the non-instantaneous interaction. It is found that enhanced feedback between shallow convection and low-level moisture convergence results in amplified shallow convective heating, and then generates reinforced moisture convergence, which transports more moisture upward. The improved simulations of eastward propagation of the MJO are largely attributed to higher specific humidity below 600 hPa in the free troposphere to the east of maximum rainfall center, which is related to stronger boundary layer moisture convergence forced by shallow convection. Large-scale horizontal advection causes asymmetric moisture tendencies relative to rainfall center (positive to the east and negative to the west) and also gives rise to eastward propagation. The zonal advection, especially the advection of anomalous specific humidity by mean zonal wind, is found to dominate the difference of horizontal advection between each pair of simulations. The results indicate the vital importance of non-instantaneous feedback between shallow convection and moisture convergence for convection organization and the eastward MJO propagation. 
    more » « less
  3. Abstract

    Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis.

    Significance Statement

    In comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.

     
    more » « less
  4. Abstract

    The governing thermodynamics of the Madden‐Julian Oscillation (MJO) is examined using sounding and reanalysis data. On the basis of four objective criteria, results suggest that the MJO behaves like a moisture mode–a system whose thermodynamics is governed by moisture–only over the Indian Ocean. Over this basin, the MJO shows a slow convective adjustment timescale, its zonal scale is smaller, and it exhibits slow propagation, allowing moisture modes to exist. Elsewhere, the faster‐propagating wavenumber 1–2 components are more prominent preventing weak temperature gradient (WTG) balance to be established. As a result, temperature and moisture play similar roles in the MJO's thermodynamics outside the Indian Ocean.

     
    more » « less
  5. Abstract

    The Tibetan Plateau (TP) and Himalayas have been treated as an essential external factor in shaping Asian monsoon and mid-latitude atmospheric circulation. In this study we perform numerical experiments with different uplift altitudes using the Nanjing University of Information Science and Technology Earth System Model to examine potential impacts of uplift of the TP and Himalayas on eastward propagation of the MJO and the associated mechanisms. Analysis of experimental results with dynamics-based MJO diagnostics indicates two potential mechanisms. First, the uplift considerably enhances low-level mean westerlies in the Indian Ocean and convection in the Maritime Continent, which in turn strengthens boundary layer moisture convergence (BLMC) to the east of the MJO convective center. The increased BLMC reinforces upward transport of moisture and heat from BL to free atmosphere and increases lower tropospheric diabatic heating by shallow and congestus clouds ahead of the MJO center, enhancing the Kelvin-Rossby wave feedback. Second, the uplift increases upper tropospheric mean easterlies and stratiform heating at the west of the MJO center, which contributes to eastward propagation of MJO by generating positive moist static energy at the east of MJO center. This study will contribute to a better understanding of the origin of the MJO and improvement in simulation of MJO propagation.

     
    more » « less