skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Baryon Number Transport, Strangeness Conservation and Ω-hadron Correlations
Although strange quarks are produced in ss¯ pairs, the ratio of Ω − to Ω¯ + is greater than one in heavy-ion collisions at lower RHIC energies. Thus the produced Ω hyperons must carry net baryon quantum numbers from the colliding nuclei. We present results of K-Ω correlations from AMPT model simulations of Au+Au collisions at √S NN = 14.6 GeV, to probe dynamics for baryon number transport to mid-rapidities at this beam energy. We use both the default and string-melting versions to illustrate how hadronization schemes of quark coalescence and string fragmentations could leave imprints on such correlations. Implications on the measurements of these correlations with the STAR experiment at RHIC will also be discussed.  more » « less
Award ID(s):
2012947
PAR ID:
10428036
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Kim, Y.; Moon, D.H.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
276
ISSN:
2100-014X
Page Range / eLocation ID:
03002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In nuclear collisions at RHIC energies, an excess of$$\Omega$$ Ω hyperons over$$\bar{\Omega }$$ Ω ¯ is observed, indicating that$$\Omega$$ Ω has a net baryon number despitesand$$\bar{s}$$ s ¯ quarks being produced in pairs. The baryon number in$$\Omega$$ Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of$$\Omega$$ Ω with other types of anti-hyperons such as$$\bar{\Xi }$$ Ξ ¯ . To investigate these two scenarios, we propose to measure the correlations between$$\Omega$$ Ω andKand between$$\Omega$$ Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport (AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the$$\Omega$$ Ω -hadron correlations from simulated Au+Au collisions at$$\sqrt{s_\text{NN}} = 7.7$$ s NN = 7.7 and$$14.6 \ \textrm{GeV}$$ 14.6 GeV and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions. 
    more » « less
  2. Kim, Y.; Moon, D.H. (Ed.)
    At low to moderate collision energies where the parton formation time τ F is not small compared to the nuclear crossing time, the finite nuclear thickness significantly affects the energy density ϵ( t ) and net conserved-charge densities such as the net-baryon density n B ( t ) produced in heavy ion collisions. As a result, at low to moderate energies the trajectory in the QCD phase diagram is also affected by the finite nuclear thickness. Here, we first discuss our semi-analytical model and its results on ϵ( f ), n R ( t ), n Q ( t ), and n s ( t ) in central Au+Au collisions. We then compare the T ( t ), μ B ( t ), μ Q ( t ), and μ S ( t ) extracted with the ideal gas equation of state (EoS) with quantum statistics to those extracted with a lattice QCD-based EoS. We also compare the T -μ B trajectories with the RHIC chemical freezeout data. Finally, we discuss the effect of transverse flow on the trajectories. 
    more » « less
  3. Bellwied, R; Geurts, F; Rapp, R; Ratti, C; Timmins, A; Vitev, I (Ed.)
    Since the discovery of the jet quenching at RHIC, the in-medium interaction of hard scattered partons with the nuclear medium created by highenergy heavy-ion collisions has been an excellent tool to understand not only the transport properties of the medium but also its time evolution towards hadronization. The multi-differential measurement of the high momentum twoparticle correlations can probe a particular space-time window as a function of energy transfer. Comparing the correlations with the prompt photon-triggered hadron spectra, one can extract the property of the medium from various aspects and contribute to distinct models. The PHENIX experiment at RHIC has collected its highest statistics of theγ and π0 triggered hadron events in Au+Au collisions at √sNN= 200 GeV in the RHIC Year-2014 run, and measured not only the inclusive spectra of the triggered hadrons but also the angle and energy dependent IAA and DAA. We will discuss the in-medium modification of the energy-space structure of the jets at the RHIC energies with the results obtained. 
    more » « less
  4. Abstract During the early development of quantum chromodynamics, it was proposed that baryon number could be carried by a non-perturbative Y-shaped topology of gluon fields, called the gluon junction, rather than by the valence quarks as in the QCD standard model. A puzzling feature of ultra-relativistic nucleus-nucleus collisions is the apparent substantial baryon excess in the mid-rapidity region that could not be adequately accounted for in most conventional models of quark and diquark transport. The transport of baryonic gluon junctions is predicted to lead to a characteristic exponential distribution of net-baryon density with rapidity and could resolve the puzzle. In this context we point out that the rapidity density of net-baryons near mid-rapidity indeed follows an exponential distribution with a slope of$$-0.61\pm 0.03$$ - 0.61 ± 0.03 as a function of beam rapidity in the existing global data from A+A collisions at AGS, SPS and RHIC energies. To further test if quarks or gluon junctions carry the baryon quantum number, we propose to study the absolute magnitude of the baryon vs. charge stopping in isobar collisions at RHIC. We also argue that semi-inclusive photon-induced processes ($$\gamma +p$$ γ + p /A) at RHIC kinematics provide an opportunity to search for the signatures of the baryon junction and to shed light onto the mechanisms of observed baryon excess in the mid-rapidity region in ultra-relativistic nucleus-nucleus collisions. Such measurements can be further validated in A+A collisions at the LHC and$$e+p$$ e + p /A collisions at the EIC. 
    more » « less
  5. A<sc>bstract</sc> The angular correlations between charged Ξ baryons and associated identified hadrons (pions, kaons, protons, Λ baryons, and Ξ baryons) are measured in pp collisions at$$ \sqrt{s} $$ s = 13 TeV with the ALICE detector to give insight into the particle production mechanisms and balancing of quantum numbers on the microscopic level. In particular, the distribution of strangeness is investigated in the correlations between the doubly-strange Ξ baryon and mesons and baryons that contain a single strange quark, K and Λ. As a reference, the results are compared to Ξπand Ξp correlations, where the associated mesons and baryons do not contain a strange valence quark. These measurements are expected to be sensitive to whether strangeness is produced through string breaking or in a thermal production scenario. Furthermore, the multiplicity dependence of the correlation functions is measured to look for the turn-on of additional particle production mechanisms with event activity. The results are compared to predictions from the string-breaking model Pythia8, including tunes with baryon junctions and rope hadronisation enabled, the cluster hadronisation model Herwig7, and the core-corona model Epos-lhc. While some aspects of the experimental data are described quantitatively or qualitatively by the Monte Carlo models, no model can match all features of the data. These results provide stringent constraints on the strangeness and baryon number production mechanisms in pp collisions. 
    more » « less