Asynchronous verifiable secret sharing (AVSS) protocols protect a secret that is distributed among N parties. Dual-threshold AVSS protocols guarantee consensus in the presence of T Byzantine failures and privacy if fewer than P parties attempt to reconstruct the secret. In this work, we construct a dual-threshold AVSS protocol that is optimal along several dimensions. First, it is a high-threshold AVSS scheme, meaning that it is a dual-threshold AVSS with optimal parameters T < N/3 and P < N - T. Second, it has O(N^2) message complexity, and for large secrets it achieves the optimal O(N) communication overhead, without the need for a public key infrastructure or trusted setup. While these properties have been achieved individually before, to our knowledge this is the first protocol that is achieves all of the above simultaneously. The core component of our construction is a high-threshold AVSS scheme for small secrets based on polynomial commitments that achieves O(N^2 log(N)) communication overhead, as compared to prior schemes that require O(N^3) overhead with T
more »
« less
In a key-agreement protocol whose security is proven in the random oracle model (ROM), the parties and the eavesdropper can make bounded number of queries to a shared random function (an “oracle”). Such protocol are the alternative to key-agreement protocols whose security is based on “public-key assumptions”, assumptions that being more structured are presumingly more vulnerable to attacks. Barak and Mahmoody [Crypto ’09] (following Impagliazzo and Rudich [STOC ’89]) have shown the ROM key-agreement protocols can only guarantee limited secrecy: the key of any `l-query protocol can be revealed by an O(l^2 )-query adversary, a bound that matches the gap obtained by the Merkle’s Puzzles two-message protocol of Merkle [CACM ’78]. While this quadratic gap might not seem like much, if the honest parties are willing to work “hard enough” and given continuousness improvement in common hash functions evaluation time, this gap yields a good enough advantage (assuming the security of the protocol holds when initiating the random function with a fixed hash function).
In this work we consider the communication complexity of ROM key-agreement protocols. In Merkle’s Puzzles, the honest parties need to exchange Ω(l) bits (ignoring logarithmic factors) to obtain secrecy against an eavesdropper that makes roughly l^2 queries, which makes the protocol unrealizable in many settings. We show that for protocols with certain natural properties, such high communication is unavoidable. Specifically, this is the case if the honest parties’ queries are independent and uniformly random, or alternatively if the protocol uses non-adaptive queries and has only two rounds. Since two-round key-agreement protocol are equivalent to public-key encryption scheme (seeing the first message as the public-key), the latter result bounds the public-key and encryption size of public-key encryption scheme whose security is proven in the ROM.
more »
« less
Key separation is often difficult to enforce in practice. While key reuse can be catastrophic for security, we know of a number of cryptographic schemes for which it is provably safe. But existing formal models, such as the notions of joint security (Haber-Pinkas, CCS ’01) and agility (Acar et al., EUROCRYPT ’10), do not address the full range of key-reuse attacks—in particular, those that break the abstraction of the scheme, or exploit protocol interactions at a higher level of abstraction. This work attends to these vectors by focusing on two key elements: the game that codifies the scheme under attack, as well as its intended adversarial model; and the underlying interface that exposes secret key operations for use by the game. Our main security experiment considers the implications of using an interface (in practice, the API of a software library or a hardware platform such as TPM) to realize the scheme specified by the game when the interface is shared with other unspecified, insecure, or even malicious applications. After building up a definitional framework, we apply it to the analysis of two real-world schemes: the EdDSA signature algorithm and the Noise protocol framework. Both provide some degree of context separability, a design pattern for interfaces and their applications that aids in the deployment of secure protocols.
more »
« less
We present a novel scheme for cache-aided communication over multiple-input
and single output (MISO) cellular networks. The presented scheme achieves the same number of degrees of freedom as known coded caching schemes, but, at much lower complexity. The scheme is derived for communication systems with heterogeneous rates and finite signal-to-noise ratio, in which links are modeled by wideband fading channels. The base station is serving multiple users simultaneously, by sending a combination of several packets, each intended for one user. The interference is either suppressed using the cache content or nulled by zero-forcing at the unintended users. We focus on efficient coding schemes, which allow for a maximum number of users to be served throughout the course of communication. An achievable rate region is characterized by determining the extreme rate vectors satisfying an efficient transmission. The analysis results in a simple scheduling scheme and in a closed-form performance analysis.
more »
« less
null
(Ed.)
We construct locally decodable codes (LDCs) to correct insertion-deletion errors in the setting where the sender and receiver share a secret key or where the channel is resource-bounded. Our constructions rely on a so-called ``Hamming-to-InsDel'' compiler (Ostrovsky and Paskin-Cherniavsky, ITS '15 \& Block et al., FSTTCS '20), which compiles any locally decodable Hamming code into a locally decodable code resilient to insertion-deletion (InsDel) errors. While the compilers were designed for the classical coding setting, we show that the compilers still work in a secret key or resource-bounded setting. Applying our results to the private key Hamming LDC of Ostrovsky, Pandey, and Sahai (ICALP '07), we obtain a private key InsDel LDC with constant rate and polylogarithmic locality. Applying our results to the construction of Blocki, Kulkarni, and Zhou (ITC '20), we obtain similar results for resource-bounded channels; i.e., a channel where computation is constrained by resources such as space or time.
more »
« less