skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01’s genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC–MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.  more » « less
Award ID(s):
2148730 1643687 2148731
PAR ID:
10428159
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
14
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Primary production is fundamental to ecosystems, and in many extreme environments production is facilitated by microbial mats. Microbial mats are complex assemblages of photo- and heterotrophic microorganisms colonizing sediment and soil surfaces. These communities are the dominant producers of the McMurdo Dry Valleys, Antarctica, where they occupy lentic and lotic environments as well as intermittently wet soils. While the influence of microbial mats on stream nutrient dynamics and lake organic matter cycling is well documented, the influence of microbial mats on underlying soil is less well understood, particularly the effects of microbial mat nitrogen and carbon fixation. Taylor Valley soils occur across variable levels of inorganic phosphorus availability, with the Ross Sea drift containing four times that of the Taylor drifts, providing opportunities to examine how soil geochemistry influences microbial mats and the ecological functions they regulate. We found that inorganic phosphorus availability is positively correlated with microbial mat biomass, pigment concentration and nitrogen fixation potential. Additionally, our results demonstrate that dense microbial mats influence the ecological functioning of underlying soils by enriching organic carbon and total nitrogen stocks (two times higher). This work contributes to ongoing questions regarding the sources of energy fuelling soil food webs and the regional carbon balance in the McMurdo Dry Valleys. 
    more » « less
  2. Peptides and proteins were identified during a controlled laboratory degradation of the marine diatom Thalassiosira weissflogii by a surface seawater microbiome. Samples from each time point were processed both with and without the protease trypsin, allowing a partial differentiation between peptides produced naturally by microbial enzymatic degradation and peptides produced from the laboratory digestion of intact protein. Over the 12-day degradation experiment, 31% of the particulate organic carbon was depleted, and there was no preferential degradation of the overall protein pool. However, there was distinct differentiation in the cellular location, secondary structure and modifications between peptides produced by microbial vs. laboratory breakdown. During the initial period of rapid algal decay and bacterial growth, intracellular components from the cytoplasm were consumed first, resulting in the accumulation of membrane-associated proteins and peptides in the detrital pool. Accompanying the enrichment of membrane protein material was an increase in the importance of ɑ-helix motifs. Methylated arginine, a post-translational modification common in cell senescence, was found in high amounts within the microbially produced detrital peptide pool, suggesting a link between in-cell modification and resistance to immediate degradation. Another modification—asparagine deamidation—accumulated within the detrital peptides. Protein taxonomies showed the bacterial community decomposing the algal material was rich in Proteobacteria, and protein annotations showed abundant transportation of solubilized carbohydrates and small peptides across membranes. At this early stage of diagenesis, no changes in bulk amino acids (THAA) were observed, yet a proteomic approach allowed us to observe selective changes in diatom protein preservation by using amino acid sequences to infer subcellular location, secondary structures, and post-translational modifications (PTMs). 
    more » « less
  3. Maresca, Julia A. (Ed.)
    ABSTRACT We report the 3.5-Mb draft genome sequence of the cyanobacterium Synechococcus sp. strain Nb3U1, which was isolated from a microbial mat sample collected from Nakabusa Hot Spring, Nagano, Japan. 
    more » « less
  4. The vast majority of bacteria require iron to grow. A significant iron acquisition strategy is the production of siderophores, which are secondary microbial metabolites synthesized to sequester iron(III). Siderophore structures encompass a variety of forms, of which highly modified peptidic siderophores are of interest herein. State‐of‐the‐art genome mining tools, such as antiSMASH (antibiotics & Secondary Metabolite Analysis SHell), hold the potential to predict and discover new peptidic siderophores, including a combinatoric suite of triscatechol siderophores framed on a triserine‐ester backbone of the general class, (DHB‐ l / d CAA‐ l Ser) 3 (CAA, cationic amino acid). Siderophores with l / d Arg, l / d Lys and l Orn, but not d Orn, were predicted in bacterial genomes. Fortuitously the d Orn siderophore was identified, yet its lack of prediction highlights the limitation of current genome mining tools. The full combinatoric suite of these siderophores, which form chiral iron(III) complexes, reveals stereospecific coordination chemistry encoded in microbial genomes. The chirality embedded in this suite of Fe(III)‐siderophores raises the question of whether the relevant siderophore‐mediated iron acquisition pathways are stereospecific and selective for ferric siderophore complexes of a defined configuration. 
    more » « less
  5. Abstract Animals often shape environmental microbial communities, which can in turn influence animal gut microbiomes. Invasive species in critical habitats may reduce grazing pressure from native species and shift microbial communities. The landlocked coastal ponds, pools, and caves that make up the Hawaiian anchialine ecosystem support an endemic shrimp (Halocaridina rubra) that grazes on diverse benthic microbial communities, including orange cyanobacterial‐bacterial crusts and green algal mats. Here, we asked how shrimp: (1) shape the abundance and composition of microbial communities, (2) respond to invasive fishes, and (3) whether their gut microbiomes are affected by environmental microbial communities. We demonstrate that ecologically relevant levels of shrimp grazing significantly reduce epilithon biomass. Shrimp grazed readily and grew well on both orange crusts and green mat communities. However, individuals from orange crusts were larger, despite crusts having reduced concentrations of key fatty acids. DNA profiling revealed shrimp harbor a resident gut microbiome distinct from the environment, which is relatively simple and stable across space (including habitats with different microbial communities) and time (between wild‐caught individuals and those maintained in the laboratory for >2 yr). DNA profiling also suggests shrimp grazing alters environmental microbial community composition, possibly through selective consumption and/or physical interactions. While this work suggests grazing by endemic shrimp plays a key role in shaping microbial communities in the Hawaiian anchialine ecosystem, the hypothesized drastic ecological shifts resulting from invasive fishes may be an oversimplification as shrimp may largely avoid predation. Moreover, environmental microbial communities may have little influence on shrimp gut microbiomes. 
    more » « less