skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meta-optics inspired surface plasmon devices [Meta-optics inspired surface plasmon devices]
Award ID(s):
2114103
PAR ID:
10428279
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Photonics Insights
Volume:
2
Issue:
1
ISSN:
2791-1748
Page Range / eLocation ID:
R02
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The inverse design of meta-optics has received much attention in recent years. In this paper, we propose a GPU-friendly inverse design framework based on improved eigendecomposition-free rigorous diffraction interface theory, which offers up to 16.2 × speedup over the traditional inverse design based on rigorous coupled-wave analysis. We further improve the framework’s flexibility by introducing a hybrid parameterization combining neural-implicit and traditional shape optimization. We demonstrate the effectiveness of our framework through intricate tasks, including the inverse design of reconfigurable free-form meta-atoms. 
    more » « less
  2. Abstract Nanostructured anti‐reflection metasurfaces for infrared lenses are designed for imaging in harsh environments such as dust (e.g., moon or battlefield), micrometeorites (e.g., Lagrange points), and high‐radiation fluctuations (e.g., Mars) with limited lifetimes. These multifunctional optical meta‐surfaces (MOMS) simultaneously deliver high thermal stability and anti‐fouling behavior due to their monolithic nature (e.g., no mismatch in the coefficient of thermal expansion), hydrophobicity, and low dust adherence. However, the incompatibility of inorganic semiconductor micromachining with non‐planar substrates has limited MOMS to polymeric and glass lenses. Here, a new method of conformal electrochemical nanoimprinting is presented to directly micromachine a nature‐inspired MOMS onto a silicon lens. Uniquely, stretchablegold‐coated patterned porous PVDF stamps are made by lithographically templated thermally induced phase separation (lt‐TIPS), which simultaneously embeds it with (i) interconnected porosity for promoting mass transport, (ii) HF‐resistance for increasing operational lifetime, and (iii) stretchable electronic nanocoatings (i.e., Au) that can catalyze the electrochemical process. In a demonstration of its hierarchical micromachining capability, a sharklet microscale pattern is successfully transferred to a silicon lens with anti‐reflective and hydrophobic properties. This work paves the way for MOMS’ extension onto inorganic semiconductors and IR lenses. 
    more » « less
  3. Rapid advancements in autonomous systems and the Internet of Things have necessitated the development of compact and low-power image sensors to bridge the gap between the digital and physical world. To that end, sub-wavelength diffractive optics, commonly known as meta-optics, have garnered significant interest from the optics and photonics community due to their ability to achieve multiple functionalities within a small form factor. Despite years of research, however, the performance of meta-optics has often remained inferior compared to that of traditional refractive optics. In parallel, computational imaging techniques have emerged as a promising path to miniaturize optical systems, albeit often at the expense of higher power and latency. The lack of desired performance from either meta-optical or computational solutions has motivated researchers to look into a jointly optimized meta-optical–digital solution. While the meta-optical front end can preprocess the scene to reduce the computational load on the digital back end, the computational back end can in turn relax requirements on the meta-optics. In this Perspective, we provide an overview of this up-and-coming field, termed here as “software-defined meta-optics.” We highlight recent contributions that have advanced the current state of the art and point out directions toward which future research efforts should be directed to leverage the full potential of subwavelength photonic platforms in imaging and sensing applications. Synergistic technology transfer and commercialization of meta-optic technologies will pave the way for highly efficient, compact, and low-power imaging systems of the future. 
    more » « less