skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preserving Location Privacy in the Modern Era of Pervasive Environments
The rapid expansion of location-based services gives rise to significant security and privacy apprehensions. While these services deliver convenience, they accentuate concerns regarding widespread location tracking via web services, mobile apps, IoT devices, and autonomous vehicles. In this study, we comprehensively assess the merits and constraints of prevalent techniques in location privacy protection, including spatial-temporal cloaking, k-anonymity, differential privacy, and encryption. Furthermore, we delve into emerging applications like intelligent traffic planning and virus contact tracing which introduce novel complexities to the pursuit of robust location privacy safeguards.  more » « less
Award ID(s):
1946619
PAR ID:
10528421
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2385-6
Page Range / eLocation ID:
44 to 51
Format(s):
Medium: X
Location:
Atlanta, GA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k -anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods. 
    more » « less
  2. One of the most popular location privacy-preserving mechanisms applied in location-based services (LBS) is location obfuscation, where mobile users are allowed to report obfuscated locations instead of their real locations to services. Many existing obfuscation approaches consider mobile users that can move freely over a region. However, this is inadequate for protecting the location privacy of vehicles, as their mobility is restricted by external factors, such as road networks and traffic flows. This auxiliary information about external factors helps an attacker to shrink the search range of vehicles' locations, increasing the risk of location exposure. In this paper, we propose a vehicle traffic flow aware attack that leverages public traffic flow information to recover a vehicle's real location from obfuscated location. As a countermeasure, we then develop an adaptive strategy to obfuscate a vehicle's location by a "fake" trajectory that follows a realistic traffic flow. The fake trajectory is designed to not only hide the vehicle's real location but also guarantee the quality of service (QoS) of LBS. Our experimental results demonstrate that 1) the new threat model can accurately track vehicles' real locations, which have been obfuscated by two state-of-the-art algorithms, and 2) the proposed obfuscation method can effectively protect vehicles' location privacy under the new threat model without compromising QoS. 
    more » « less
  3. As mobile devices become increasingly prevalent in society, the expected utility of such devices rises; arguably, the most impact comes from location-based services as they provide tremendous benefits to mobile users. These users also value privacy, i.e., keeping their locations and search queries private, but that is not easy to achieve. It has been previously proposed that user location privacy can be secured through the use of space filling curves due to their ability to preserve spatial proximity while hiding the actual physical locations. With a space filling curve, such as the Hilbert curve, an application that provides location-based services can allow the user to take advantage of those services without transmitting a physical location. Earlier research has uncovered vulnerabilities of such systems and proposed remedies. But those countermeasures were clearly aimed at reasonably large metropolitan areas. It was not clear if they were appropriate for small towns, which display sparsity of Points of Interest (POIs) and limited diversity in their categories. This paper studies the issue focusing on a small university town. 
    more » « less
  4. The vehicular fog is a relatively new computing paradigm where fog computing works with the vehicular network. It provides computation, storage, and location-aware services with low latency to the vehicles in close proximity. A vehicular fog network can be formed on-the-fly by adding underutilized or unused resources of nearby parked or moving vehicles. Interested vehicles can outsource their resources or data by being added to the vehicular fog network while maintaining proper security and privacy. Client vehicles can use these resources or services for performing computation-intensive tasks, storing data, or getting crowdsource reports through the proper secure and privacy-preserving communication channel. As most vehicular network applications are latency and location sensitive, fog is more suitable than the cloud because of the capability of performing calculations with low latency, location awareness, and the support of mobility. Architecture, security, and privacy models of vehicular fog are not well defined and widely accepted yet as it is in its early stage. In this paper, we have analyzed existing studies on vehicular fog to determine the requirements and issues related to the architecture, security, and privacy of vehicular fog computing. We have also identified and highlighted the open research problems in this promising area. 
    more » « less
  5. Widespread deployment of Intelligent Infrastructure and the In- ternet of Things creates vast troves of passively-generated data. These data enable new ubiquitous computing applications—such as location-based services—while posing new privacy threats. In this work, we identify challenges that arise in applying use-based privacy to passively-generated data, and we develop Ancile, a plat- form that enforces use-based privacy for applications that consume this data. We find that Ancile constitutes a functional, performant platform for deploying privacy-enhancing ubiquitous computing applications. 
    more » « less