skip to main content


Title: Lattice matched GeSn/InAlAs heterostructure: role of Sn in energy band alignment, atomic layer diffusion and photoluminescence
Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge 0.97 Sn 0.03 /AlAs; (ii) a 0.81% compressively strained Ge 0.94 Sn 0.06 /Ge; and (iii) a lattice matched Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge–Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge 0.94 Sn 0.06 alloy was determined as b = 314.81 ± 14 cm −1 . Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of E g,Γ = 0.72 eV and E g,L = 0.66 eV for 0.81% compressively strained Ge 0.94 Sn 0.06 , and E g,Γ = 0.73 eV and E g,L = 0.68 eV for lattice matched Ge 0.94 Sn 0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of Δ E V = 0.91 ± 0.1 eV and conduction band offset of Δ E C,Γ–X = 0.64 ± 0.1 eV were determined from the Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device.  more » « less
Award ID(s):
2042079
NSF-PAR ID:
10428430
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this work we study the nature of the band gap in GeSn alloys for use in silicon-based lasers. Special attention is paid to Sn-induced band mixing effects. We demonstrate from both experiment and ab-initio theory that the (direct) Γ-character of the GeSn band gap changes continuously with alloy composition and has significant Γ-character even at low (6%) Sn concentrations. The evolution of the Γ-character is due to Sn-induced conduction band mixing effects, in contrast to the sharp indirect-to-direct band gap transition obtained in conventional alloys such as Al1−xGaxAs. Understanding the band mixing effects is critical not only from a fundamental and basic properties viewpoint but also for designing photonic devices with enhanced capabilities utilizing GeSn and related material systems.

     
    more » « less
  2. Synthesis of device-quality GeSn materials with higher Sn compositions is hindered by various factors, such as Sn segregation, clustering, and short-range ordering effects. In the present work, the impact of the clustering of Sn atoms in a GeSn semiconductor alloy was studied by density functional theory using SG15 pseudopotentials in a Synopsys QuantumATK tool, where the thermodynamic stability, effective band structure, indirect and direct bandgaps, and density of states (DOS) were computed to highlight the difference between a cluster-free random GeSn alloy and a GeSn alloy with Sn–Sn clusters. A 54-atom bulk Ge1–xSnx (x = 3.71%–27.77%) supercell was constructed with cluster-free and a first nearest neighbor Sn–Sn clustered GeSn alloy at each composition for this work. Computation using the generalized gradient approximation exchange-correlation functional showed that the thermodynamic stability of GeSn was reduced due to the clustering of Sn, which increased the formation energy of the GeSn alloys by increasing the Hartree potential energy and exchange-correlation energy. Moreover, with the effective band structure of the GeSn material at a Sn composition of ∼22%, both direct (Eg,Γ) and indirect (Eg,L) bandgaps decreased by a large margin of 40.76 and 120.17 meV, respectively, due to Sn–Sn clustering. On the other hand, Eg,Γ and Eg,L decrease is limited to 0.5 and 12.8 meV, respectively, for Sn composition of ∼5.6%. Similar impacts were observed on DOS, in an independent computation without deducing from the electronic band structure, where the width of the forbidden band reduces due to the clustering of Sn atoms in GeSn. Moreover, using the energy bandgaps of GeSn computed with the assumption of it being a random alloy having well-dispersed Sn atoms needs revision by incorporating clustering to align with the experimentally determined bandgap. This necessitates incorporating the effect of Sn atoms clustered together at varying distributions based on experimental characterization techniques such as atom probe tomography or extended x-ray absorption fine structure to substantiate the energy bandgap of the GeSn alloy at a particular composition with precision. Hence, considering the effect of Sn clusters during material characterization, beginning with the accurate energy bandgap characterization of GeSn would help in mitigating the effect of process variations on the performance characteristics of GeSn-based group IV electronic and photonic devices such as varying leakage currents in transistors and photodiodes as well as the deviation from the targeted wavelength of operation in lasers and photodetectors.

     
    more » « less
  3. Abstract

    α-Sn and SnGe alloys are attracting attention as a new family of topological quantum materials. However, bulkα-Sn is thermodynamically stable only below 13C. Moreover, scalable integration ofα-Sn quantum materials and devices on silicon is hindered by their large lattice mismatch. Here, we grow compressively strainedα-Sn doped with 2-4 at.% germanium on a native oxide layer on a silicon substrate at 300–500C. Growth is found to occur by a reversedβ-Sn toα-Sn phase transformation without relying on epitaxy, with germanium-rich GeSn nanoclusters in the as-deposited material acting as seeds. The size ofα-Sn microdots reaches up to 200 nm, which is approximately ten times larger than the upper size limit forα-Sn formation reported previously. Furthermore, the compressive strain makes it a candidate 3D topological Dirac semimetal with possible applications in spintronics. This process can be further optimized to achieve optically tunable SnGe quantum material and device integration on silicon.

     
    more » « less
  4. null (Ed.)
    A predicted type-II staggered band alignment with an approximately 1.4 eV valence band offset at the ZnGeN2/GaN heterointerface has inspired novel band-engineered III-N/ZnGeN2 heterostructure-based device designs for applications in high performance optoelectronics. We report on the determination of the valence band offset between metalorganic chemical vapor deposition grown (ZnGe)1−xGa2xN2, for x = 0 and 0.06, and GaN using x-ray photoemission spectroscopy. The valence band of ZnGeN2 was found to lie 1.45–1.65 eV above that of GaN. This result agrees well with the value predicted by first-principles density functional theory calculations using the local density approximation for the potential profile and quasiparticle self-consistent GW calculations of the band edge states relative to the potential. For (ZnGe)0.94Ga0.12N2 the value was determined to be 1.29 eV, ∼10%–20% lower than that of ZnGeN2. The experimental determination of the large band offset between ZnGeN2 and GaN provides promising alternative solutions to address challenges faced with pure III-nitride-based structures and devices. 
    more » « less
  5. Researchers have been aggressively investigating group-IV (Ge, SiGeSn, GeSn) optoelectronic materials to realize tunable wavelength lasers, photodetectors, and transistors. By exploiting strain and bandgap engineering of these materials via choice of substrate orientation and intelligent buffer engineering as well as precise control of Sn alloy composition during material synthesis, it will offer widespread device applications. There is an opportunity to improve the device-level quality of GeSn material systems along with higher Sn incorporation that face growth challenges during epitaxy. The current research work presents the substrate orientation and misorientation (100)/2˚, (100)/6˚, (110), (111) mediated epitaxial GeSn and Ge optoelectronic materials synthesized via MBE and analyzed using several analytical tools. X-ray analysis demonstrated high quality GeSn materials with less broadening and good symmetricity on (100) compared to (110) GeSn materials. Minority carrier lifetimes of these GeSn epilayers were extracted as > 400 ns for the (100) substrate misoriented by 6˚ towards [110] direction. Raman spectroscopy measurements were performed to study the vibrational properties, where the LO phonon wavenumber shifts at ωLO = 301.11 ± 0.8 cm¬–1 from (100)/2˚, (100)/6˚ and (110) oriented GeSn epilayers that were synthesized in equivalent growth conditions. Cross-sectional TEM of (100)/2˚ GeSn sample was performed that revealed good quality GeSn material on GaAs. Elimination of the interfaced electronic dipole charge effects, that destabilize the group-IV/group III-V heterointerface and further layer growths, is attributed to aid in achieving superior quality GeSn epitaxial materials over a (100) substrate that is misoriented by 6˚ towards the [110] direction. This substrate offcut will enable to annihilate antiphase domains due to polar-on-non-polar epitaxial growth, which further reduce non-radiative recombination centers in GeSn material. Hence, growth of GeSn material on misoriented (100) substrate offers two-fold benefits: (i) reduced active defects at the GeSn/III-V heterointerface, and (ii) self-annihilation of the antiphase domain boundaries for enhancing the efficiency of optical devices. 
    more » « less