skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Velocity Constrained Time-Optimal Control of a Gantry Crane System
The focus of this paper is on the development of velocity constrained time-optimal control profiles for point-to-point motion of a gantry crane system. Assuming that the velocity of the trolley of the crane can be commanded, an optimal control problem is posed to determine the bang-off-bang control profile to transition the system to the terminal states with no residual vibrations. Both undamped and underdamped systems are considered and the variation of the structure of the optimal control profiles as a function of the final displacement is studied and the collapse and birthing of switches in the control profile are explained. To account for uncertainties in model parameters, a robust controller design is posed and the tradeoff of increase in maneuver time to the reduction of residual vibrations is illustrated.  more » « less
Award ID(s):
2021710
PAR ID:
10428442
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 American Control Conference
Page Range / eLocation ID:
3766 to 3770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a real-time time-delay filtering approach for reference shaping of high precision motion control of vibratory systems. The motion of the system is initiated with a judicious (arbitrary) step command and the acquired motion data is used to estimate the modal parameters in realtime.The modal data is subsequently used to synthesize the subsequent step commands to mitigate the residual vibrations. The proposed control algorithm is tested on a gantry crane structure with a suspended payload. Our method estimates the system parameters based on computer vision while tracking an ArUco fiducial marker which is integral with the payload. Computational efficiency is ensured by using C++ to deploy the algorithm. The goal is to minimize the residual energy at the terminal displacement for rest-to-rest maneuvers of a suspended payload with unknown dynamics. An inertial measurement unit is used to track the pendular angular velocity at the end of the maneuver and is not used in the model identification process. 
    more » « less
  2. In an earlier paper (https://doi.org/10.1137/21M1393315), the switch point algorithm was developed for solving optimal control problems whose solutions are either singular or bang-bang or both singular and bang-bang, and which possess a finite number of jump discontinuities in an optimal control at the points in time where the solution structure changes. The class of control problems that were considered had a given initial condition, but no terminal constraint. The theory is now extended to include problems with both initial and terminal constraints, a structure that often arises in boundary-value problems. Substantial changes to the theory are needed to handle this more general setting. Nonetheless, the derivative of the cost with respect to a switch point is again the jump in the Hamiltonian at the switch point. 
    more » « less
  3. A modified form of Legendre-Gauss orthogonal direct collocation is developed for solving optimal control problems whose solutions are nonsmooth due to control discon- tinuities. This new method adds switch time variables, control variables, and collocation conditions at both endpoints of a mesh interval, whereas these new variables and collocation con- ditions are not included in standard Legendre-Gauss orthogonal collocation. The modified Legendre-Gauss collocation method alters the search space of the resulting nonlinear programming problem and optimizes the switch point of the control solution. The transformed adjoint system of the modified Legendre- Gauss collocation method is then derived and shown to satisfy the necessary conditions for optimality. Finally, an example is provided where the optimal control is bang-bang and contains multiple switches. This method is shown to be capable of solving complex optimal control problems with nonsmooth solutions. 
    more » « less
  4. The focus of this work is on the development of a model for a gantry crane transporting a non point-mass payload such as pipes, where besides the payload swinging, includes the twisting motion also, which can be hazardous if not adequately controlled. Euler-Lagrange equations of motion are derived which permit accounting for payloads whose center of mass does not coincide with the hoisting cable attachment. Work-Energy principle is used to ensure that a collocated Proportional-Derivative (PD)-controller is stabilizing and an input shaper is used to shape the reference profile to permit minimal residual vibration of the payload. 
    more » « less
  5. This paper considers the control of fluid on a solid vertical fiber, where the fiber radius is larger than the film thickness. The fluid dynamics is governed by a fourth-order partial differential equation (PDE) that models this flow regime. Fiber coating is affected by the Rayleigh–Plateau instability that leads to breakup into moving droplets. In this work, we show that control of the film profile can be achieved by dynamically altering the input flux to the fluid system that appears as a boundary condition of the PDE. We use the optimal control methodology to compute the control function. This method entails solving a minimization of a given cost function over a time horizon. We formally derive the optimal control conditions, and numerically verify that subject to the domain length constraint, the thin film equation can be controlled to generate a desired film profile with a single point of actuation. Specifically, we show that the system can be driven to both constant film profiles and traveling waves of certain speeds. 
    more » « less