The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980–2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.
more »
« less
Substantial contribution of iodine to Arctic ozone destruction
Abstract Unlike bromine, the effect of iodine chemistry on the Arctic surface ozone budget is poorly constrained. We present ship-based measurements of halogen oxides in the high Arctic boundary layer from the sunlit period of March to October 2020 and show that iodine enhances springtime tropospheric ozone depletion. We find that chemical reactions between iodine and ozone are the second highest contributor to ozone loss over the study period, after ozone photolysis-initiated loss and ahead of bromine.
more »
« less
- PAR ID:
- 10428543
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Geoscience
- Volume:
- 15
- Issue:
- 10
- ISSN:
- 1752-0894
- Page Range / eLocation ID:
- 770 to 773
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)As the chemical and physical state of the stratosphere evolves, so too will the rates of important ozone-destroying reactions. In this work, we evaluate the chemistry-climate sensitivity of reactions of stratospheric iodine, reporting the iodine alpha factor (the efficiency of ozone loss mediated by a single iodine atom relative to the ozone loss mediated by a single chlorine atom) and the iodine eta factor (the efficiency of ozone loss mediated by a single iodine atom relative to the ozone loss mediated by a single chlorine atom in a benchmark chemistry-climate state) as a function of future greenhouse gas emissions scenario. We find that iodine-mediated ozone loss is much less sensitive to future changes in the state of the stratosphere than chlorine- and bromine-mediated reactions. Additionally, we demonstrate that the inclusion of the heterogeneous reaction of ozone with aqueous iodide in stratospheric aerosol produces substantial enhancements in the iodine alpha and eta factors relative to evaluations that consider gas-phase iodine reactions only. We conclude that the share of halogen-induced ozone loss due to reactions of iodine will likely be greater in the future stratosphere than it is today.more » « less
-
Abstract Snowpack emissions are recognized as an important source of gas‐phase reactive bromine in the Arctic and are necessary to explain ozone depletion events in spring caused by the catalytic destruction of ozone by halogen radicals. Quantifying bromine emissions from snowpack is essential for interpretation of ice‐core bromine. We present ice‐core bromine records since the pre‐industrial (1750 CE) from six Arctic locations and examine potential post‐depositional loss of snowpack bromine using a global chemical transport model. Trend analysis of the ice‐core records shows that only the high‐latitude coastal Akademii Nauk (AN) ice core from the Russian Arctic preserves significant trends since pre‐industrial times that are consistent with trends in sea ice extent and anthropogenic emissions from source regions. Model simulations suggest that recycling of reactive bromine on the snow skin layer (top 1 mm) results in 9–17% loss of deposited bromine across all six ice‐core locations. Reactive bromine production from below the snow skin layer and within the snow photic zone is potentially more important, but the magnitude of this source is uncertain. Model simulations suggest that the AN core is most likely to preserve an atmospheric signal compared to five Greenland ice cores due to its high latitude location combined with a relatively high snow accumulation rate. Understanding the sources and amount of photochemically reactive snow bromide in the snow photic zone throughout the sunlit period in the high Arctic is essential for interpreting ice‐core bromine, and warrants further lab studies and field observations at inland locations.more » « less
-
Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean.more » « less
-
Abstract Previous efforts to measure atmospheric iodine have focused on marine and coastal regions. We report the first ground‐based tropospheric iodine monoxide (IO) radical observations over the central continental United States. Throughout April 2022, IO columns above Storm Peak Laboratory, Colorado (3,220 m.a.s.l.) ranged from 0.7 ± 0.5 to 3.6 ± 0.5 × 1012(average: 1.9 × 1012 molec cm−2). IO was consistently elevated in air masses transported from over the Pacific Ocean. The observed IO columns were up to three times higher and the range was larger than predicted by a global model, which warrants further investigation into iodine sources, sinks, ozone loss, and particle formation. IO mixing ratios increased with altitude. At the observed levels, iodine may be competitive with bromine as an oxidant of elemental mercury at cold temperatures typical of the free troposphere. Iodine‐induced mercury oxidation is missing in atmospheric models, understudied, and helps explain model underestimation of oxidized mercury measurements.more » « less
An official website of the United States government

