skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Narrowband Photometry of the M101 Group: Strong-line Abundances of 720 H ii Regions
Abstract We present deep, narrowband imaging of the nearby spiral galaxy M101 and its satellites to analyze the oxygen abundances of their H ii regions. Using Case Western Reserve University’s Burrell Schmidt telescope, we add to the narrowband data set of the M101 Group, consisting of H α , H β , and [O iii ] emission lines and the blue [O ii ] λ 3727 emission line for the first time. This allows for complete spatial coverage of the oxygen abundance of the entire M101 Group. We used the strong-line ratio R 23 to estimate oxygen abundances for the H ii regions in our sample, utilizing three different calibration techniques to provide a baseline estimate of the oxygen abundances. This results in ∼650 H ii regions for M101, 10 H ii regions for NGC 5477, and ∼60 H ii regions for NGC 5474, the largest sample for this Group to date. M101 shows a strong abundance gradient, while the satellite galaxies present little or no gradient. There is some evidence for a flattening of the gradient in M101 beyond R ∼ 14 kpc. Additionally, M101 shows signs of azimuthal abundance variations to the west and southwest. The radial and azimuthal abundance variations in M101 are likely explained by an interaction it had with its most massive satellite, NGC 5474, ∼300 Myr ago combined with internal dynamical effects such as corotation.  more » « less
Award ID(s):
1911909
PAR ID:
10428594
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The spatial distribution of metals reflects, and can be used to constrain, the processes of chemical enrichment and mixing. Using PHANGS-MUSE optical integral field spectroscopy, we measure the gas-phase oxygen abundances (metallicities) across 7138 H ii regions in a sample of eight nearby disc galaxies. In Paper I, we measure and report linear radial gradients in the metallicities of each galaxy, and qualitatively searched for azimuthal abundance variations. Here, we examine the 2D variation in abundances once the radial gradient is subtracted, Δ(O/H), in order to quantify the homogeneity of the metal distribution and to measure the mixing scale over which H ii region metallicities are correlated. We observe low (0.03–0.05 dex) scatter in Δ(O/H) globally in all galaxies, with significantly lower (0.02–0.03 dex) scatter on small (<600 pc) spatial scales. This is consistent with the measurement uncertainties, and implies the 2D metallicity distribution is highly correlated on scales of ≲600 pc. We compute the two-point correlation function for metals in the disc in order to quantify the scale lengths associated with the observed homogeneity. This mixing scale is observed to correlate better with the local gas velocity dispersion (of both cold and ionized gas) than with the star formation rate. Selecting only H ii regions with enhanced abundances relative to a linear radial gradient, we do not observe increased homogeneity on small scales. This suggests that the observed homogeneity is driven by the mixing introducing material from large scales rather than by pollution from recent and on-going star formation. 
    more » « less
  2. Abstract The dispersion in chemical abundances provides a very strong constraint on the processes that drive the chemical enrichment of galaxies. Due to its proximity, the spiral galaxy M33 has been the focus of numerous chemical abundance surveys to study the chemical enrichment and dispersion in abundances over large spatial scales. The CHemical Abundances Of Spirals project has observed ∼100 H ii regions in M33 with the Large Binocular Telescope (LBT), producing the largest homogeneous sample of electron temperatures ( T e ) and direct abundances in this galaxy. Our LBT observations produce a robust oxygen abundance gradient of −0.037 ± 0.007 dex kpc −1 and indicate a relatively small (0.043 ± 0.015 dex) intrinsic dispersion in oxygen abundance relative to this gradient. The dispersions in N/H and N/O are similarly small, and the abundances of Ne, S, Cl, and Ar relative to O are consistent with the solar ratio as expected for α -process or α -process-dependent elements. Taken together, the ISM in M33 is chemically well-mixed and homogeneously enriched from inside out, with no evidence of significant abundance variations at a given radius in the galaxy. Our results are compared to those of the numerous studies in the literature, and we discuss possible contaminating sources that can inflate abundance dispersion measurements. Importantly, if abundances are derived from a single T e measurement and T e – T e relationships are relied on for inferring the temperature in the unmeasured ionization zone, this can lead to systematic biases that increase the measured dispersion up to 0.11 dex. 
    more » « less
  3. Abstract As a part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey, we investigate indirect evidence of gas inflow into the disk of the galaxyNGC 99. We combine optical spectra from the Binospec spectrograph on the MMT telescope with optical imaging data from the Vatican Advanced Technology Telescope, radio Hi21 cm emission images from the NSF Karl G. Jansky’s Very Large Array, and UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope. We measure emission lines (Hα, Hβ, [Oiii]λ5007, [Nii]λ6583, and [Sii]λ6717, 31) in 26 Hiiregions scattered about the galaxy and estimate a radial metallicity gradient of −0.017 dex kpc−1using the N2 metallicity indicator. Two regions in the sample exhibit an anomalously low metallicity (ALM) of 12 + log(O/H) = 8.36 dex, which is ∼0.16 dex lower than other regions at that galactocentric radius. They also show a high difference between their Hiand Hαline of sight velocities on the order of 35 km s−1. Chemical evolution modeling indicates gas accretion as the cause of the ALM regions. We find evidence for corotation between the interstellar medium ofNGC 99and Lyαclouds in its circumgalactic medium, which suggests a possible pathway for low metallicity gas accretion. We also calculate the resolved Fundamental Metallicity Relation (rFMR) on subkiloparsec scales using localized gas-phase metallicity, stellar mass surface density, and star formation rate surface density. The rFMR shows a similar trend as that found by previous localized and global FMR relations. 
    more » « less
  4. Abstract Using deep near-infrared Keck/MOSFIRE observations, we analyze the rest-optical spectra of eight star-forming galaxies in the COSMOS and GOODS-N fields. We reach integration times of ∼10 hr in the deepest bands, pushing the limits on current ground-based observational capabilities. The targets fall into two redshift bins, of five galaxies atz∼ 1.7 and three galaxies atz∼ 2.5, and were selected as likely to yield significant auroral-line detections. Even with long integration times, detection of the auroral lines remains challenging. We stack the spectra together into subsets based on redshift, improving the signal-to-noise ratio on the [Oiii]λ4364 auroral emission line and, in turn, enabling a direct measurement of the oxygen abundance for each stack. We compare these measurements to commonly employed strong-line ratios alongside measurements from the literature. We find that the stacks fall within the distribution ofz> 1 literature measurements, but a larger sample size is needed to robustly constrain the relationships between strong-line ratios and oxygen abundance at high redshift. We additionally report detections of [Oi]λ6302 for nine individual galaxies and composite spectra of 21 targets in the MOSFIRE pointings. We plot their line ratios on the [Oiii]λ5008/Hβversus [Oi]λ6302/Hαdiagnostic diagram, comparing our targets to local galaxies and Hiiregions. We find that the [Oi]/Hαratios in our sample of galaxies are consistent with being produced in gas ionized byα-enhanced massive stars, as has been previously inferred for rapidly forming galaxies at early cosmic times. 
    more » « less
  5. Abstract Accurately determining gas-phase metal abundances within galaxies is critical as metals strongly affect the physics of the interstellar medium. To date, the vast majority of widely used gas-phase abundance indicators rely on emission from bright optical lines, whose emissivities are highly sensitive to the electron temperature. Alternatively, direct-abundance methods exist that measure the temperature of the emitting gas directly, though these methods usually require challenging observations of highly excited auroral lines. Low-lying far-infrared (FIR) fine structure lines are largely insensitive to electron temperature and thus provide an attractive alternative to optically derived abundances. Here, we introduce the far-infrared abundance (FIRA) project, which employs these FIR transitions, together with both radio free–free emission and hydrogen recombination lines, to derive direct, absolute gas-phase oxygen abundances. Our first target is M101, a nearby spiral galaxy with a relatively steep abundance gradient. Our results are consistent with the O ++ electron temperatures and absolute oxygen abundances derived using optical direct-abundance methods by the CHemical Abundance Of Spirals (CHAOS) program, with a small difference (∼1.5 σ ) in the radial abundance gradients derived by the FIR/free–free-normalized versus CHAOS/direct-abundance techniques. This initial result demonstrates the validity of the FIRA methodology—with the promise of determining absolute metal abundances within dusty star-forming galaxies, both locally and at high redshift. 
    more » « less