skip to main content


Title: Catalogue of phonon modes in several cuprate high-temperature superconductors from density functional theory
Cuprates are promising candidates for study in developing highertemperature superconductors. A thorough understanding of a material’sphonon modes enables further investigation of its emergent properties,however, no complete reference of the phonon modes exists. Here, usingdensity functional theory, we evaluate the phonon frequencies and atomicdisplacements for La2CuO4,Bi2Sr2CuO6,and Bi2Sr2CaCu2O8,in their tetragonal structures. The phonon modes for all materials agreewith those expected from space group symmetry and display instabilitiescorresponding to known low-temperature structural phase transitions.  more » « less
Award ID(s):
1752713
NSF-PAR ID:
10428639
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SciPost Physics Core
Volume:
6
Issue:
1
ISSN:
2666-9366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electron–phonon interactions play an essential role in charge transport and transfer processes in semiconductors. For most structures, tailoring electron–phonon interactions for specific functionality remains elusive. Here, it is shown that, in hybrid perovskites, coherent phonon modes can be used to manipulate charge transfer. In the 2D double perovskite, (AE2T)2AgBiI8(AE2T: 5,5“‐diylbis(amino‐ethyl)‐(2,2”‐(2)thiophene)), the valence band maximum derived from the [Ag0.5Bi0.5I4]2–framework lies in close proximity to the AE2T‐derived HOMO level, thereby forming a type‐II heterostructure. During transient absorption spectroscopy, pulsed excitation creates sustained coherent phonon modes, which periodically modulate the associated electronic levels. Thus, the energy offset at the organic–inorganic interface also oscillates periodically, providing a unique opportunity for modulation of interfacial charge transfer. Density‐functional theory corroborates the mechanism and identifies specific phonon modes as likely drivers of the coherent charge transfer. These observations are a striking example of how electron–phonon interactions can be used to manipulate fundamentally important charge and energy transfer processes in hybrid perovskites.

     
    more » « less
  2. Abstract

    Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon‐polaritons that allow for low‐loss, subdiffractional control of light. The properties of phonon‐polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most “bulk” materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so‐called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm−1. These results provide an alternative pathway toward designer IR optical materials.

     
    more » « less
  3. We determine the composition dependence of the transverse and longitudinal optical infrared-active phonon modes in rhombohedral α-(AlxGa1−x)2O3alloys by far-infrared and infrared generalized spectroscopic ellipsometry. Single-crystalline high quality undoped thin-films grown on m-plane oriented α-Al2O3substrates with x =  0.18, 0.37, and 0.54 were investigated. A single mode behavior is observed for all phonon modes, i.e., their frequencies shift gradually between the equivalent phonon modes of the isostructural binary parent compounds. We also provide physical model line shape functions for the anisotropic dielectric functions. We use the anisotropic high-frequency dielectric constants for polarizations parallel and perpendicular to the lattice c axis measured recently by Hilfiker et al. [Appl. Phys. Lett. 119, 092103 (2021)], and we determine the anisotropic static dielectric constants using the Lyddane–Sachs–Teller relation. The static dielectric constants can be approximated by linear relationships between those of α-Ga2O3and α-Al2O3. The optical phonon modes and static dielectric constants will become useful for device design and free charge carrier characterization using optical techniques.

     
    more » « less
  4. Abstract

    Twisted van der Waals materials featuring Moiré patterns present new design possibilities and demonstrate unconventional behaviors in electrical, optical, spintronic, and superconducting properties. However, experimental exploration of thermal transport across Moiré patterns has not been as extensive, despite its critical role in nanoelectronics, thermal management, and energy technologies. Here, the first experimental study is conducted on thermal transport across twisted graphene, demonstrating a phonon polarizer concept from the rotational misalignment between stacked layers. The direct thermal and acoustic measurements, structural characterizations, and atomistic modeling, reveal a modulation up to 631% in thermal conductance with various Moiré angles, while maintaining a high acoustic transmission. By comparing experiments with density functional theory and molecular dynamics simulations, mode‐dependent phonon transmissions are quantified based on the angle alignment of graphene band structures and attributed to the coupling among flexural phonon modes. The agreement confirms the dominant tuning mechanisms in adjusting phonon transmission from high‐frequency thermal modes while having negligible effects on low‐frequency acoustic modes near Brillouin zone center. This study offers crucial insights into the fundamental thermal transport in Moiré structures, opening avenues for the invention of quantum thermal devices and new design methodologies based on manipulations of vibrational band structures and phonon spectra.

     
    more » « less
  5. Abstract

    The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.

     
    more » « less