skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Curriculum of Table-Top Quantum Optics Experiments to Teach Quantum Physics
Abstract The rise of quantum information as a viable technology requires appropriate instructional curricula for preparing a future workforce. Key concepts that are the basis of quantum information involve fundamentals of quantum mechanics, such as superposition, entanglement and measurement. To complement modern initiatives to teach quantum physics to the emerging workforce, lab experiences are needed. We have developed a curriculum of quantum optics experiments to teach quantum mechanics fundamentals and quantum algebra. These laboratories provide hands-on experimentation of optical components on a table-top. We have also created curricular materials, manuals, tutorials, parts and price lists for instructors. Automation of the apparatus offers the flexibility of using the apparatus remotely and for giving access to a greater number of students with a single setup.  more » « less
Award ID(s):
2011937
PAR ID:
10428775
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2448
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rise of quantum information as a viable technology requires appropriate instructional curricula for preparing a future workforce. Key concepts that are the basis of quantum information involve fundamentals of quantum mechanics, such as superposition, entanglement and measurement. To complement modern initiatives to teach quantum physics to the emerging workforce, lab experiences are needed. We have developed a curriculum of quantum optics experiments to teach quantum mechanics fundamentals and quantum algebra. These laboratories provide hands-on experimentation of optical components on a table-top. We have also created curricular materials, manuals, tutorials, parts and price lists for instructors. Automation of the apparatus offers the fexibility of using the apparatus remotely and for giving access to a greater number of students with a single setup. 
    more » « less
  2. Quantum information science (QIS) is of growing importance to economic and national security, commerce, and technology. The development of a "quantum smart" workforce needs to begin before college since most students will not major in physics. Thus, it is vital to expose K-12 students to quantum concepts that are relevant to everyday experiences with credit card security, phones, computers, and basic technology and to prepare teachers to teach this content. The logical venue for exposure to basic ideas in quantum science might be a high school physics course, or even a physical science course if a full physics course is not offered. Professional development (PD) for educators typically includes 1-2 weeks of intensive instruction, usually in the summer. Teachers are then expected to remember what they learned and implement it several months after the PD. The model is based on prior research indicating that an educator needs a minimum of 80 hours of PD to become comfortable enough to implement the new instruction in their classroom. However, little research has been done as to how much they actually implement. For the past three years, we have been engaged in a project funded by the US National Science Foundation to build mechanisms (materials and PD strategies) for educating a quantum-ready workforce. Our PD model is based on pedagogical techniques used in classrooms, specifically the components of learn then practice in order to avoid cognitive overload. Instruction is more effective when the learners (teachers or students) are given opportunities to actively engage in the learning process through interaction/collaboration with peers, exploring challenges, and practicing what they have learned. This paper will share the logistics of our new PD new model, challenges, finding from our current research, and implications for future PD in K-16. 
    more » « less
  3. Abstract The observables associated with a quantum system S form a non-commutative algebra A S . It is assumed that a density matrix ρ can be determined from the expectation values of observables. But A S admits inner automorphisms a ↦ u a u − 1 , a , u ∈ A S , u * u = u u * = 1 , so that its individual elements can be identified only up to unitary transformations. So since Tr  ρ ( uau *) = Tr( u * ρu ) a , only the spectrum of ρ , or its characteristic polynomial, can be determined in quantum mechanics. In local quantum field theory, ρ cannot be determined at all, as we shall explain. However, abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables in abelian algebras A M ⊂ A S ( M for measurement, S for system). We study the uncertainties in extending ρ | A M to ρ | A S (the determination of which means measurement of A S ) and devise a protocol to determine ρ | A S ≡ ρ by determining ρ | A M for different choices of A M . The problem we formulate and study is a generalization of the Kadison–Singer theorem. We give an example where the system S is a particle on a circle and the experiment measures the abelian algebra of a magnetic field B coupled to S . The measurement of B gives information about the state ρ of the system S due to operator mixing. Associated uncertainty principles for von Neumann entropy are discussed in the appendix, adapting the earlier work by Białynicki-Birula and Mycielski (1975 Commun. Math. Phys. 44 129) to the present case. 
    more » « less
  4. Some of the fundamentals of quantum information science are described, including the concepts of quantum resources, quantum states and mixedness of states. The explanations are detailed and include a combination of basic facts with fully worked examples, and some more advanced topics. The principles of quantum information are illustrated with chemical examples drawn from singlet fission, photophysics of radicals, molecular excitons, electron transfer and so on. Suggestions for prospects and challenges for the field are discussed. 
    more » « less
  5. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] Instruction in quantum mechanics is becoming increasingly important as the field is not only a key part of modern physics research but is also important for emerging technologies. However, many students regard quantum mechanics as a particularly challenging subject, in part because it is considered very mathematical and abstract. One potential way to help students understand and contextualize unintuitive quantum ideas is to provide them opportunities to work with physical apparatus demonstrating these phenomena. In order to understand how working with quantum experiments affects students’ reasoning, we performed think-aloud lab sessions with two pairs of students as they worked through a sequence of quantum optics experiments that demonstrated particle-wave duality of photons. Analyzing the in-the-moment student thinking allowed us to identify the resources students activated while reasoning through the experimental evidence of single-photon interference, as well as student ideas about what parts of the experiments were quantum versus classical. This work will aid instructors in helping their students construct an understanding of these topics from their own ideas and motivate future investigations into the use of hands-on opportunities to facilitate student learning about quantum mechanics. Published by the American Physical Society2024 
    more » « less