skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Einstein beams carrying orbital angular momentum
Einstein beams are coherent optical beams generated by the conditions of gravitational lensing. In the ray picture, Einstein beams are formed by the intersection of light rays deflected by a lensing mass, similar to nondiffracting Bessel beams, but with the difference that adjacent rays diverge slightly. When accounting for the wave properties of light, they form beam-like diffraction patterns that preserve their shape but expand as the light propagates. The addition of a topological charge to the light, leads to more complex patterns carrying orbital angular momentum. For symmetric lensing conditions, Einstein beams carry modes described by confluent hypergeometric functions, which can be approximated by Bessel functions. A theoretical analysis of this is presented here. In astrophysical observations, many of these features can only be inferred because conditions of coherence and alignment make them difficult to observe. Studies of Einstein beams in the laboratory can be used to inform astrophysical observations and discover new non-astrophysical laboratory applications.  more » « less
Award ID(s):
2011937
PAR ID:
10428779
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Andrews, D; Galvez, E; Rubinsztein-Dunlop
Date Published:
Journal Name:
Proceedings of SPIE
Volume:
12436
ISSN:
1996-756X
Page Range / eLocation ID:
124360C
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Andrews, David L.; Galvez, Enrique J.; Rubinsztein-Dunlop, Halina (Ed.)
    We use a spatial light modulator (SLM) to mimic the e ect of gravity and steer the light from a laser to observe Einstein rings with a laboratory camera. The derived programming of the phase of the SLM follows a logarithmic dependence with impact parameter. As expected, we also observe arcs when the source and lensing object are not in line with the observer. Measurements for distinct parameters are consistent with the expectations. The coherent optical beams that are programmed to follow gravitational lensing trajectories have a transverse mode consistent with Bessel functions, yet they do not exhibit the non-di racting properties of Bessel beams: they expand linearly with the propagation distance. The addition of a vortex phase also produces patterns that coincide with Bessel modes of order given by the topological charge of the vortex. 
    more » « less
  2. Abstract The study of light lensed by cosmic matter has yielded much information about astrophysical questions. Observations are explained using geometrical optics following a ray-based description of light. After deflection the lensed light interferes, but observing this diffractive aspect of gravitational lensing has not been possible due to coherency challenges caused by the finite size of the sources or lack of near-perfect alignment. In this article, we report on the observation of these wave effects of gravitational lensing by recreating the lensing conditions in the laboratory via electro-optic deflection of coherent laser light. The lensed light produces a beam containing regularities, caustics, and chromatic modulations of intensity that depend on the symmetry and structure of the lensing object. We were also able to observe previous and new geometric-optical lensing situations that can be compared to astrophysical observations. This platform could be a useful tool for testing numerical/analytical simulations, and for performing analog simulations of lensing situations when they are difficult to obtain otherwise. We found that laboratory lensed beams constitute a new class of beams, with long-range, low expansion, and self-healing properties, opening new possibilities for non-astrophysical applications. 
    more » « less
  3. De_Stefano, L; Velotta, R; Descrovi, E (Ed.)
    We use spatial light modulation to investigate the diffractive effects of gravitational lensing in the laboratory. Using this new platform for laboratory astrophysics, we can overcome the coherence challenges that prevent the observation of diffraction in astronomical imaging. These studies will inform gravitational lensing of gravitational waves when imaging of gravitational waves becomes available. Our previous work involved studying lensing by a single mass, symmetric and elliptical. This work focuses on the patterns produced by a binary-mass system. We observed rich 2-dimensional interference patterns bounded by caustics. Comparison of experimental results with preliminary theoretical calculations is excellent. 
    more » « less
  4. Abstract The large available bandwidth at sub-terahertz and terahertz frequencies has the potential to enable very high data rates for wireless communications. Moreover, given the large electrical size of terahertz antenna apertures, many future terahertz communication systems will likely operate in the near field. However, due to their reliance on highly directional beams, terahertz systems are susceptible to blockage. Here, we propose using Bessel beams to overcome issues caused by blockage due to their diffraction-free nature and self-healing properties in the near field. We compare the performance of information-bearing Bessel beams and Gaussian beams with and without an obstacle. We later discuss the use of reconfigurable intelligent surfaces to construct terahertz Bessel beams. Finally, we propose a metric to quantify the quality of imperfectly generated terahertz Bessel beams and explore their ability to self-heal. The results demonstrate that Bessel beams are an attractive option for near-field terahertz communications, especially when mitigating the effects of partial blockage. 
    more » « less
  5. Abstract Several new methods are proposed that can diagnose the interscale transfer (or spectral flux) of kinetic energy (KE) and other properties in oceanic and broader geophysical systems, using integrals of advective structure functions and Bessel functions (herein “Bessel methods”). The utility of the Bessel methods is evaluated using simulations of anisotropic flow within two-dimensional (2D), surface quasigeostrophic (SQG), and two-layer QG systems. The Bessel methods diagnose various spectral fluxes within all of these systems, even under strong anisotropy and complex dynamics (e.g., multiple cascaded variables, coincident and opposing spectral fluxes, and nonstationary systems). In 2D turbulence, the Bessel methods capture the inverse KE cascade at large scales and the downscale enstrophy cascade (and associated downscale energy flux) at small scales. In SQG turbulence, the Bessel methods capture the downscale buoyancy variance cascade and the coincident upscale wavenumber-dependent KE flux. In QG turbulence, the Bessel methods capture the upscale kinetic energy flux. It is shown that these Bessel methods can be applied to data with limited extent or resolution, provided the scales of interest are captured by the range of separation distances. The Bessel methods are shown to have several advantages over other flux-estimation methods, including the ability to diagnose downscale energy cascades and to identify sharp transition scales. Analogous Bessel methods are also discussed for third-order structure functions, along with some caveats due to boundary terms. Significance StatementBig ocean eddies play an important role in Earth’s energy cycle by moving energy to both larger and smaller scales, but it is difficult to measure these “eddy energy fluxes” from oceanic observations. We develop a new method to estimate eddy energy fluxes that utilizes spatial differences between pairs of points and can be applied to various ocean data. This new method accurately diagnoses key eddy energy flux properties, as we demonstrate using idealized numerical simulations of various large-scale ocean systems. 
    more » « less