skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early Planet Formation in Embedded Disks (eDisk). I. Overview of the Program and First Results
Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results.  more » « less
Award ID(s):
1910106 2108794 2107841
PAR ID:
10428849
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;  ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present 1.3 mm continuum ALMA long-baseline observations at 3–5 au resolution of 10 of the brightest discs from the Ophiuchus DIsc Survey Employing ALMA (ODISEA) project. We identify a total of 26 narrow rings and gaps distributed in 8 sources and 3 discs with small dust cavities (r <10 au). We find that two discs around embedded protostars lack the clear gaps and rings that are ubiquitous in more evolved sources with Class II SEDs. Our sample includes five objects with previously known large dust cavities (r >20 au). We find that the 1.3 mm radial profiles of these objects are in good agreement with those produced by numerical simulations of dust evolution and planet–disc interactions, which predict the accumulation of mm-sized grains at the edges of planet-induced cavities. Our long-baseline observations resulted in the largest sample of discs observed at ∼3–5 au resolution in any given star-forming region (15 objects when combined with Ophiuchus objects in the DSHARP Large Program) and allow for a demographic study of the brightest $$\sim\! 5{{\ \rm per\ cent}}$$ of the discs in Ophiuchus (i.e. the most likely formation sites of giant planets in the cloud). We use this unique sample to propose an evolutionary sequence and discuss a scenario in which the substructures observed in massive protoplanetary discs are mainly the result of planet formation and dust evolution. If this scenario is correct, the detailed study of disc substructures might provide a window to investigate a population of planets that remains mostly undetectable by other techniques. 
    more » « less
  2. Abstract We present observations of the Class 0 protostar IRAS 16544–1604 in CB 68 from the “Early Planet Formation in Embedded Disks (eDisk)” ALMA Large program. The ALMA observations target continuum and lines at 1.3 mm with an angular resolution of ∼5 au. The continuum image reveals a dusty protostellar disk with a radius of ∼30 au seen close to edge-on and asymmetric structures along both the major and minor axes. While the asymmetry along the minor axis can be interpreted as the effect of the dust flaring, the asymmetry along the major axis comes from a real nonaxisymmetric structure. The C18O image cubes clearly show the gas in the disk that follows a Keplerian rotation pattern around a ∼0.14Mcentral protostar. Furthermore, there are ∼1500 au scale streamer-like features of gas connecting from northeast, north–northwest, and northwest to the disk, as well as the bending outflow as seen in the12CO (2–1) emission. At the apparent landing point of the NE streamer, there is SO (65–54) and SiO (5–4) emission detected. The spatial and velocity structure of the NE streamer can be interpreted as a free-falling gas with a conserved specific angular momentum, and the detection of the SO and SiO emission at the tip of the streamer implies the presence of accretion shocks. Our eDisk observations have unveiled that the Class 0 protostar in CB 68 has a Keplerian-rotating disk with a flaring and nonaxisymmetric structure associated with accretion streamers and outflows. 
    more » « less
  3. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the binary Class 0 protostellar system BHR 71 IRS1 and IRS2 as part of the Early Planet Formation in Embedded Disks (eDisk) ALMA Large Program. We describe the12CO (J= 2–1),13CO (J= 2–1), C18O (J= 2–1), H2CO (J= 32,1–22,0), and SiO (J= 5–4) molecular lines along with the 1.3 mm continuum at high spatial resolution (∼0.″08 or ∼5 au). Dust continuum emission is detected toward BHR 71 IRS1 and IRS2, with a central compact component and extended continuum emission. The compact components are smooth and show no sign of substructures such as spirals, rings, or gaps. However, there is a brightness asymmetry along the minor axis of the presumed disk in IRS1, possibly indicative of an inclined geometrically and optically thick disk-like component. Using a position–velocity diagram analysis of the C18O line, clear Keplerian motions were not detected toward either source. If Keplerian rotationally supported disks are present, they are likely deeply embedded in their envelope. However, we can set upper limits of the central protostellar mass of 0.46Mand 0.26Mfor BHR 71 IRS1 and BHR 71 IRS2, respectively. Outflows traced by12CO and SiO are detected in both sources. The outflows can be divided into two components, a wide-angle outflow and a jet. In IRS1, the jet exhibits a double helical structure, reflecting the removal of angular momentum from the system. In IRS2, the jet is very collimated and shows a chain of knots, suggesting episodic accretion events. 
    more » « less
  4. Abstract Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of12CO,13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in12CO. The13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks. 
    more » « less
  5. We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines. 
    more » « less