skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diversity in the space physics community: an overview of collaborative efforts led by The University of Alabama in Huntsville
The field of Space Physics has significant recruitment potential. Almost everyone has been fascinated by space in one way or another since their early childhood. From this perspective, Space Physics might be expected to exhibit considerable diversity as a discipline. Regrettably, as in many STEM fields, the reality is quite different. Numerous reasons have been advanced about why the reality and the expectation diverge but one observation we have made over the years stands out, and, that is, that when students are given the opportunity, they are very eager to learn about Space Physics and enthusiastic about working on space physics projects. At The University of Alabama in Huntsville, we have developed a series of outreach programs, including summer programs, that are aimed at bringing students not typically exposed to space physics into the Space Physics community through working on real research projects that have the potential to produce journal publication results. These programs have been very effective in creating interest in Space Physics and have led to the recruitment of students that have been underrepresented historically into our research programs. In this paper, we summarize the various summer programs that the Center for Space Plasma and Aeronomic Research and Department of Space Science at The University of Alabama in Huntsville have been organizing in Space Physics for years and how these programs have contributed to increasing diversity in the field.  more » « less
Award ID(s):
1950831 2148653 1655280
PAR ID:
10429049
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the summer of 2006, the NSF-funded AERIM Research Experience for Undergraduates (REU) program in the department of Mechanical Engineering at Oakland University has been offering rich research, professional development, networking and cohort-building experiences to undergraduate students in the science, technology, engineering and math (STEM) fields. With a focus on hands-on automotive and energy research projects and a proximity to many automotive companies, the program has been successful at attracting a diverse group of students. In fact, a total of 104 students from 70 different universities have participated in the program over the past 15 years, with about 70% of the participants coming from groups that have traditionally been underrepresented in engineering (women in particular). Most research projects have been team-based and have typically involved experimental and analytical work with perhaps a handful of numerical simulation-based projects over the years. Prior assessment has shown that students greatly valued and benefited from interacting with faculty mentors, industry professionals, industry tours, and each other. As a result of limitations placed on in-person meeting and on-campus activities impacted by the Covid-19 pandemic, the program had to pivot to a virtual format in the summer of 2021. This virtual format brought about several challenges and opportunities, which will be discussed in this paper. Despite the virtual format, the program was successful at attracting a diverse group of students in 2021. Twelve undergraduate students from eight different institutions took part remotely in the program and encompassed several time zones ranging from Eastern Standard Time to Alaska Standard Time. The 2021 cohort included seven women, three underrepresented minorities, and two students with a reported disability. Also noteworthy is the fact that half of the students were first generation in college students. While the PIs were happy with the student make up, running the program in a virtual format was very challenging. For one, what was traditionally a hands-on, experimental research program had to pivot to completely simulation/analytical based projects. This brought about issues related to remote access to software, time lags and difficulties with engaging students while computer simulations were running remotely. While the program was able to offer several seminars and meetings with industry professionals in a virtual fashion, it was not possible to provide industry tours or the casual conversations that would spontaneously occur when meeting face to face with industry professionals. Finally, with students logging in from their homes across the country and across different time zones rather than living together in the Oakland University dorms, the usual bonding and group interactions that would normally occur over the summer were difficult to replicate. In this paper we discuss what was learned from these challenges and how the virtual format also offered opportunities that will be utilized in future years. 
    more » « less
  2. null (Ed.)
    Undergraduate research opportunities have been demonstrated to promote recruitment, retention, and inclusion of students from underrepresented groups in STEM disciplines. The opportunity to engage in hands-on, discovery-based activities as part of a community helps students develop a strong self-identity in STEM and strengthens their self-efficacy in what can otherwise be daunting fields. Kansas State University has developed an array of undergraduate research opportunities, both in the academic year and summer, and has established a management infrastructure around these programs. The Graduate School, which hosts its own Summer Undergraduate Research Opportunity Program aimed at URM and first-generation college students, coordinates the leadership of the other grant-funded programs, and conducts a series of enrichment and networking activities for students from all the programs. These include professional development as well as primarily social sessions. The Kansas LSAMP, led by Kansas State University, created a summer program aimed at under-represented minority community college students enrolled in STEM fields to recruit them into research opportunities at K-State. There has been strong interest in the program, which incorporated university experience elements in addition to an introduction to STEM research and the four-year university. In the 5 years since the program’s inception, cohorts of nine to fourteen students came to K-State each year for eight-week experiences and took part in both cohort-based sessions and individual mentored research experiences. The two-fold focus of this program, Research Immersion: Pathways to STEM, has resulted in the majority of the students presenting a poster at a national conference and transferring to a STEM major at a four-year institution. Survey results showed that the program was successful at improving STEM identity and academic self-concepts. Qualitative feedback suggested that the two parts of the program worked together to increase interest and self confidence in STEM majors but also ensured that students connect with other students and felt comfortable in the transition to a 4-year institution. 
    more » « less
  3. The benefits of undergraduate student experiences are well known. Students participating in research experience for undergraduates (REU) programs report increased skills and self-confidence, a greater sense of empowerment as learners and more motivation to pursue science or engineering careers and graduate degrees. REU programs generally aim to engage students in exciting and rewarding research and professional development experiences to motivate them to pursue careers or advanced degrees in the sciences, technology, engineering and math (STEM). Unlike most other types of summer internships, REU programs are typically very student-focused. The faculty mentors, projects, activities, seminars, tours, etc. are selected to generate a positive impact on the student participants. After many years of offering a successful REU experience, the AERIM REU program at Oakland University (OU) decided to include a K-12 outreach component to its list of REU activities. This decision was driven by the many documented benefits of service-learning programs, which not only are of value to the persons receiving the service, but also the students providing it. They also help students improve their interpersonal and communication skills and develop a better understanding of the needs of people with diverse or different backgrounds. After pivoting to a virtual format in the summer of 2021 due the Covid-19 pandemic, the AERIM REU program was once again offered in-person in the summer of 2022, hence allowing for an outreach activity. The initial plan was to partner with a non-profit science center in the city of UU. Unfortunately, the science center was experiencing staffing changes, as well as ongoing challenges due to Covid-19, so the AERIM REU PIs had to come up with an alternative. The school of engineering and computer science at OU has a robust and active K-12 outreach program and has partnered with the RRR society to offer a summer residential STEM program, targeting under-represented minority high-school girls from the city of UU. Working in coordination with the assistant director of outreach, AERIM REU students were tasked with developing outreach activities and presentations for the camp participants. Each REU team was responsible for developing one 1-1.5 hour activity. REU students were given complete flexibility to develop their outreach activities with little faculty influence, but were encouraged to focus on hands-on activities that could relate back to their ongoing REU research projects and that would excite the camp participants about STEM. In this paper, we report on the organization and results of this initiative. Assessment results of the outreach activity will also be shared. We believe that this type of information could prove to be of value to other REU program directors and faculty seeking to organize similar programs. 
    more » « less
  4. The Geoscience Education Targeting Underrepresented Populations program is a National Science Foundation funded project designed to assess the effectiveness of a multifaceted approach to increase recruitment and retention in Earth & Environmental Science (EES) majors at Weber State University (WSU) in Ogden, Utah. This program integrates a combination of early outreach to high schools, concurrent-enrollment courses, a summer bridge program, structured early undergraduate research experiences, community engaged learning, and multiple pedagogies to support a diverse student population. The focus of this presentation will be on the place-based educational approach to teaching an Earth science summer bridge program and a first-year summer research experience. These programs overlap in both time and location allowing incoming students to have peer-to-peer interactions with current EES majors. The summer bridge program runs for two weeks and provides students with an introduction to the WSU campus, available student services, initial advising, and an early collaborative research experience focused on local natural hazards and the Great Salt Lake basin water resources. Students collect water samples from Great Salt Lake, local streams, and a groundwater well field on WSU’s campus. Students then analyze major element chemistry of those samples with the help of faculty and students in the EES department using lab facilities at WSU. The summer research program is a four-week summer program for freshmen and sophomores who have declared an EES major. Students conduct in-depth field and lab research project on the Great Salt Lake ecosystem, using real-time geochemical data collected from field observatories on Antelope Island State Park. Students work as a team with a faculty lead and senior peer teaching assistants to address a research question by analyzing field station data as well as collecting and analyzing environmental chemistry and microbiology samples from the lake, including alkalinity, inorganic and organic carbon, major ions, cell counts, and photosynthetic efficiency. The summer research students also act as peer mentors for students in the Summer Bridge. All students present their research finding to friends and family at a celebratory event on the last day of both programs. We will present on the successes and challenges of the program to date and our plans to assess various components and their overall impact on student recruitment and retention in our department. 
    more » « less
  5. Eliza Keener, Dept of Engineering Technology, Fairmont State University, Fairmont, WV 26554, and Landon Brewer, Dept of Natural Sciences, Fairmont State University, Fairmont, WV 26554. Benefits of First2 Network immersive bridge programs at Fairmont State University.    The First2 Network’s Immersion program at Fairmont State University provides a college bridge experience for incoming students in science, technology and engineering and math (STEM). The First2 Network’s goal is to guide and assist rural, first-generation, and other underrepresented STEM college students. The summer immersion bridge experience immerses students into college life. Students stay in dorms and learn what it’s like to be away from home while engaging in a program which includes real research projects in collaboration with professors and peer mentors, introductions to campus resources, and social events. This program helps students get acclimated to college, making it an easier adjustment. The immersive experience also provides connections and a safe space that students can go to when they have questions or need help.     As students who attended the immersive program during the summer of 2022, we can say that it helped us greatly. Not only did we learn about all the resources on campus, but we got real lab experience. We were lab partners conducting analytical chemistry research on lead in paint. We performed all the lab work with supervision and guidance from chemistry professors and lab assistants. At the end of the 2 weeks, we presented our research to students, faculty, and family members. This immersion program was resume and experience building, that helped us make connections with our peers that a have persisted throughout our first year. 
    more » « less