skip to main content


Search for: All records

Award ID contains: 1950831

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The field of Space Physics has significant recruitment potential. Almost everyone has been fascinated by space in one way or another since their early childhood. From this perspective, Space Physics might be expected to exhibit considerable diversity as a discipline. Regrettably, as in many STEM fields, the reality is quite different. Numerous reasons have been advanced about why the reality and the expectation diverge but one observation we have made over the years stands out, and, that is, that when students are given the opportunity, they are very eager to learn about Space Physics and enthusiastic about working on space physics projects. At The University of Alabama in Huntsville, we have developed a series of outreach programs, including summer programs, that are aimed at bringing students not typically exposed to space physics into the Space Physics community through working on real research projects that have the potential to produce journal publication results. These programs have been very effective in creating interest in Space Physics and have led to the recruitment of students that have been underrepresented historically into our research programs. In this paper, we summarize the various summer programs that the Center for Space Plasma and Aeronomic Research and Department of Space Science at The University of Alabama in Huntsville have been organizing in Space Physics for years and how these programs have contributed to increasing diversity in the field. 
    more » « less
    Free, publicly-accessible full text available June 6, 2024
  2. Abstract A challenge in characterizing active region (AR) coronal heating is in separating transient (bursty) loop heating from the diffuse background (steady) heating. We present a method of quantifying coronal heating’s bursty and steady components in ARs, applying it to Fe xviii (hot 94) emission of an AR observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The maximum-, minimum-, and average-brightness values for each pixel, over a 24 hr period, yield a maximum-brightness map, a minimum-brightness map, and an average-brightness map of the AR. Running sets of such three maps come from repeating this process for each time step of running windows of 20, 16, 12, 8, 5, 3, 1, and 0.5 hr. From each running window’s set of three maps, we obtain the AR’s three corresponding luminosity light curves. We find (1) the time-averaged ratio of minimum-brightness-map luminosity to average-brightness-map luminosity increases as the time window decreases, and the time-averaged ratio of maximum-brightness-map luminosity to average-brightness-map luminosity decreases as the window decreases; (2) for the 24 hr window, the minimum-brightness map’s luminosity is 5% of the average-brightness map’s luminosity, indicating that at most 5% of the AR’s hot 94 luminosity is from heating that is steady for 24 hr; (3) this upper limit on the fraction of the hot 94 luminosity from steady heating increases to 33% for the 30 minute running window. This requires that the heating of the 4–8 MK plasma in this AR is mostly in bursts lasting less than 30 minutes: at most a third of the heating is steady for 30 minutes. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)