skip to main content

This content will become publicly available on May 1, 2024

Title: The classical dynamics of gauge theories in the deep infrared
A bstract Gauge and gravitational theories in asymptotically flat settings possess infinitely many conserved charges associated with large gauge transformations or diffeomorphisms that are nontrivial at infinity. To what extent do these charges constrain the scattering in these theories? It has been claimed in the literature that the constraints are trivial, due to a decoupling of hard and soft sectors for which the conserved charges constrain only the dynamics in the soft sector. We show that the argument for this decoupling fails due to the failure in infinite dimensions of a property of symplectic geometry which holds in finite dimensions. Specializing to electromagnetism coupled to a massless charged scalar field in four dimensional Minkowski spacetime, we show explicitly that the two sectors are always coupled using a perturbative classical computation of the scattering map. Specifically, while the two sectors are uncoupled at low orders, they are coupled at quartic order via the electromagnetic memory effect. This coupling cannot be removed by adjusting the definitions of the hard and soft sectors (which includes the classical analog of dressing the hard degrees of freedom). We conclude that the conserved charges yield nontrivial constraints on the scattering of hard degrees of freedom. This conclusion should also apply to gravitational scattering and to black hole formation and evaporation. In developing the classical scattering theory, we show that generic Lorenz gauge solutions fail to satisfy the matching condition on the vector potential at spatial infinity proposed by Strominger to define the field configuration space, and we suggest a way to remedy this. We also show that when soft degrees of freedom are present, the order at which nonlinearities first arise in the scattering map is second order in Lorenz gauge, but can be third order in other gauges.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We show that the asymptotic charges associated with Lorentz symmetries on past and future null infinity match in the limit to spatial infinity in a class of asymptotically-flat spacetimes. These are spacetimes that obey the Ashtekar-Hansen definition of asymptotic flatness at null and spatial infinity and satisfy an additional set of conditions which we lay out explicitly. Combined with earlier results on the matching of supertranslation charges, this shows that all Bondi-Metzner-Sachs (BMS) charges on past and future null infinity match in the limit to spatial infinity in this class of spacetimes, proving a relationship that was conjectured by Strominger. Assuming additional suitable conditions are satisfied at timelike infinities, this proves that the flux of all BMS charges is conserved in any classical gravitational scattering process in these spacetimes. 
    more » « less
  2. We present a family of electron-based coupled-wire models of bosonic orbifold topological phases, referred to as twist liquids, in two spatial dimensions. All local fermion degrees of freedom are gapped and removed from the topological order by many-body interactions. Bosonic chiral spin liquids and anyonic superconductors are constructed on an array of interacting wires, each supports emergent massless Majorana fermions that are non-local (fractional) and constitute the S O ( N ) Kac-Moody Wess-Zumino-Witten algebra at level 1. We focus on the dihedral D k symmetry of S O ( 2 n ) 1 , and its promotion to a gauge symmetry by manipulating the locality of fermion pairs. Gauging the symmetry (sub)group generates the C / G twist liquids, where G = Z 2 for C = U ( 1 ) l , S U ( n ) 1 , and G = Z 2 , Z k , D k for C = S O ( 2 n ) 1 . We construct exactly solvable models for all of these topological states. We prove the presence of a bulk excitation energy gap and demonstrate the appearance of edge orbifold conformal field theories corresponding to the twist liquid topological orders. We analyze the statistical properties of the anyon excitations, including the non-Abelian metaplectic anyons and a new class of quasiparticles referred to as Ising-fluxons. We show an eight-fold periodic gauging pattern in S O ( 2 n ) 1 / G by identifying the non-chiral components of the twist liquids with discrete gauge theories. 
    more » « less
  3. The passive, mechanical adaptation of slender, deformable robots to their environment, whether the robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. Their reduced physical compliance can provide a form of embodied intelligence that allows the natural dynamics of interaction between the robot and its environment to guide the evolution of the combined robot-environment system. To design these systems, the problems of analysis, design optimization, control, and motion planning remain of great importance because, in general, the advantages afforded by increased mechanical compliance must be balanced against penalties such as slower dynamics, increased difficulty in the design of control systems, and greater kinematic uncertainty. The models that form the basis of these problems should be reasonably accurate yet not prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling techniques for continuum robots are reviewed and cast in a common language. Classical theories of mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in models of continuum robots, both in terms of number and of quality, for geometrically nonlinear models built from the general family of one-dimensional rod models of continuum mechanics. Consideration is also given to the variety of actuators found in existing designs, the types of interaction that occur between continuum robots and their biomedical environments, the imposition of constraints on degrees of freedom, and to the numerical solution of the family of models under study. Finally, some open problems of modeling are discussed and future challenges are identified. 
    more » « less
  4. We develop a general framework for constructing charges associated with diffeomorphisms in gravitational theories using covariant phase space techniques. This framework encompasses both localized charges associated with space–time subregions, as well as global conserved charges of the full space–time. Expressions for the charges include contributions from the boundary and corner terms in the subregion action, and are rendered unambiguous by appealing to the variational principle for the subregion, which selects a preferred form of the symplectic flux through the boundaries. The Poisson brackets of the charges on the subregion phase space are shown to reproduce the bracket of Barnich and Troessaert for open subsystems, thereby giving a novel derivation of this bracket from first principles. In the context of asymptotic boundaries, we show that the procedure of holographic renormalization can be always applied to obtain finite charges and fluxes once suitable counterterms have been found to ensure a finite action. This enables the study of larger asymptotic symmetry groups by loosening the boundary conditions imposed at infinity. We further present an algorithm for explicitly computing the counterterms that renormalize the action and symplectic potential, and, as an application of our framework, demonstrate that it reproduces known expressions for the charges of the generalized Bondi–Metzner–Sachs algebra. 
    more » « less
  5. null (Ed.)
    A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe. 
    more » « less