skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A general framework for gravitational charges and holographic renormalization
We develop a general framework for constructing charges associated with diffeomorphisms in gravitational theories using covariant phase space techniques. This framework encompasses both localized charges associated with space–time subregions, as well as global conserved charges of the full space–time. Expressions for the charges include contributions from the boundary and corner terms in the subregion action, and are rendered unambiguous by appealing to the variational principle for the subregion, which selects a preferred form of the symplectic flux through the boundaries. The Poisson brackets of the charges on the subregion phase space are shown to reproduce the bracket of Barnich and Troessaert for open subsystems, thereby giving a novel derivation of this bracket from first principles. In the context of asymptotic boundaries, we show that the procedure of holographic renormalization can be always applied to obtain finite charges and fluxes once suitable counterterms have been found to ensure a finite action. This enables the study of larger asymptotic symmetry groups by loosening the boundary conditions imposed at infinity. We further present an algorithm for explicitly computing the counterterms that renormalize the action and symplectic potential, and, as an application of our framework, demonstrate that it reproduces known expressions for the charges of the generalized Bondi–Metzner–Sachs algebra.  more » « less
Award ID(s):
2110463
PAR ID:
10429097
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of Modern Physics A
Volume:
37
Issue:
17
ISSN:
0217-751X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The quantization of pure 3D gravity with Dirichlet boundaryconditions on a finite boundary is of interest both as a model ofquantum gravity in which one can compute quantities which are ``morelocal" than S-matrices or asymptotic boundary correlators, and forits proposed holographic duality to T\overline{T} T T ¯ -deformedCFTs. In this work we apply covariant phase space methods to deduce thePoisson bracket algebra of boundary observables. The result is aone-parameter nonlinear deformation of the usual Virasoro algebra ofasymptotically AdS _3 3 gravity. This algebra should be obeyed by the stress tensor in any T\overline{T} T T ¯ -deformedholographic CFT. We next initiate quantization of this system within thegeneral framework of coadjoint orbits, obtaining — in perturbationtheory — a deformed version of the Alekseev-Shatashvili symplectic formand its associated geometric action. The resulting energy spectrum isconsistent with the expected spectrum of T\overline{T} T T ¯ -deformedtheories, although we only carry out the explicit comparison to \mathcal{O}(1/\sqrt{c}) 𝒪 ( 1 / c ) in the 1/c 1 / c expansion. 
    more » « less
  2. We derive a prescription for the phase space of general relativity on two intersecting null surfaces using the null initial value formulation. The phase space allows generic smooth initial data, and the corresponding boundary symmetry group is the semidirect product of the group of arbitrary diffeomorphisms of each null boundary which coincide at the corner, with a group of reparameterizations of the null generators. The phase space can be consistently extended by acting with half-sided boosts that generate Weyl shocks along the initial data surfaces. The extended phase space includes the relative boost angle between the null surfaces as part of the initial data. We then apply the Wald-Zoupas framework to compute gravitational charges and fluxes associated with the boundary symmetries. The non-uniqueness in the charges can be reduced to two free parameters by imposing covariance and invariance under rescalings of the null normals. We show that the Wald-Zoupas stationarity criterion cannot be used to eliminate the non-uniqueness. The different choices of parameters correspond to different choices of polarization on the phase space. We also derive the symmetry groups and charges for two subspaces of the phase space, the first obtained by fixing the direction of the normal vectors, and the second by fixing the direction and normalization of the normal vectors. The second symmetry group consists of Carrollian diffeomorphisms on the two boundaries. Finally we specialize to future event horizons by imposing the condition that the area element be non-decreasing and become constant at late times. For perturbations about stationary backgrounds we determine the independent dynamical degrees of freedom by solving the constraint equations along the horizons. We mod out by the degeneracy directions of the presymplectic form, and apply a similar procedure for weak non-degeneracies, to obtain the horizon edge modes and the Poisson structure. We show that the area operator of the black hole generates a shift in the relative boost angle under the Poisson bracket. 
    more » « less
  3. A bstract The Brown-York stress tensor provides a means for defining quasilocal gravitational charges in subregions bounded by a timelike hypersurface. We consider the generalization of this stress tensor to null hypersurfaces. Such a stress tensor can be derived from the on-shell subregion action of general relativity associated with a Dirichlet variational principle, which fixes an induced Carroll structure on the null boundary. The formula for the mixed-index tensor T i j takes a remarkably simple form that is manifestly independent of the choice of auxiliary null vector at the null surface, and we compare this expression to previous proposals for null Brown-York stress tensors. The stress tensor we obtain satisfies a covariant conservation equation with respect to any connection induced from a rigging vector at the hypersurface, as a result of the null constraint equations. For transformations that act covariantly on the boundary structures, the Brown-York charges coincide with canonical charges constructed from a version of the Wald-Zoupas procedure. For anomalous transformations, the charges differ by an intrinsic functional of the boundary geometry, which we explicity verify for a set of symmetries associated with finite null hyper-surfaces. Applications of the null Brown-York stress tensor to symmetries of asymptotically flat spacetimes and celestial holography are discussed. 
    more » « less
  4. A bstract We undertake a general study of the boundary (or edge) modes that arise in gauge and gravitational theories defined on a space with boundary, either asymptotic or at finite distance, focusing on efficient techniques for computing the corresponding boundary action. Such actions capture all the dynamics of the system that are implied by its asymptotic symmetry group, such as correlation functions of the corresponding conserved currents. Working in the covariant phase space formalism, we develop a collection of approaches for isolating the boundary modes and their dynamics, and illustrate with various examples, notably AdS 3 gravity (with and without a gravitational Chern-Simons terms) subject to assorted boundary conditions. 
    more » « less
  5. A bstract In a companion paper [1] we showed that the symmetry group $$ \mathfrak{G} $$ G of non-expanding horizons (NEHs) is a 1-dimensional extension of the Bondi-Metzner-Sachs group $$ \mathfrak{B} $$ B at $$ \mathcal{I} $$ I + . For each infinitesimal generator of $$ \mathfrak{G} $$ G , we now define a charge and a flux on NEHs as well as perturbed NEHs. The procedure uses the covariant phase space framework in presence of internal null boundaries $$ \mathcal{N} $$ N along the lines of [2–6]. However, $$ \mathcal{N} $$ N is required to be an NEH or a perturbed NEH. Consequently, charges and fluxes associated with generators of $$ \mathfrak{G} $$ G are free of physically unsatisfactory features that can arise if $$ \mathcal{N} $$ N is allowed to be a general null boundary. In particular, all fluxes vanish if $$ \mathcal{N} $$ N is an NEH, just as one would hope; and fluxes associated with symmetries representing ‘time-translations’ are positive definite on perturbed NEHs. These results hold for zero as well as non-zero cosmological constant. In the asymptotically flat case, as noted in [1], $$ \mathcal{I} $$ I ± are NEHs in the conformally completed space-time but with an extra structure that reduces $$ \mathfrak{G} $$ G to $$ \mathfrak{B} $$ B . The flux expressions at $$ \mathcal{N} $$ N reflect this synergy between NEHs and $$ \mathcal{I} $$ I + . In a forthcoming paper, this close relation between NEHs and $$ \mathcal{I} $$ I + will be used to develop gravitational wave tomography, enabling one to deduce horizon dynamics directly from the waveforms at $$ \mathcal{I} $$ I + . 
    more » « less