Abstract Reciprocal adaptation is the hallmark of arms race coevolution. Local coadaptation between natural enemies should generate a geographic mosaic pattern where both species have roughly matched abilities across their shared range. However, mosaic variation in ecologically relevant traits can also arise from processes unrelated to reciprocal selection, such as population structure or local environmental conditions. We tested whether these alternative processes can account for trait variation in the geographic mosaic of arms race coevolution between resistant garter snakes (Thamnophis sirtalis) and toxic newts (Taricha granulosa). We found that predator resistance and prey toxin levels are functionally matched in co-occurring populations, suggesting that mosaic variation in the armaments of both species results from the local pressures of reciprocal selection. By the same token, phenotypic and genetic variation in snake resistance deviates from neutral expectations of population genetic differentiation, showing a clear signature of adaptation to local toxin levels in newts. Contrastingly, newt toxin levels are best predicted by genetic differentiation among newt populations, and to a lesser extent, by the local environment and snake resistance. Exaggerated armaments suggest that coevolution occurs in certain hotspots, but prey population structure seems to be of particular influence on local phenotypic variation in both species throughout the geographic mosaic. Our results imply that processes other than reciprocal selection, like historical biogeography and environmental pressures, represent an important source of variation in the geographic mosaic of coevolution. Such a pattern supports the role of “trait remixing” in the geographic mosaic theory, the process by which non-adaptive forces dictate spatial variation in the interactions among species.
more »
« less
Phenotypic differentiation in populations of a gladiator tree frog: environment, genetic drift and sexual selection
Abstract Phenotypic differentiation among animal populations is common, yet few studies have simultaneously examined the adaptive and neutral mechanisms behind it. Such evolutionary processes become more relevant in species with complex behaviours that undergo global and local selective pressures throughout their geographical range. Here we measured and compared morphological and acoustic variation across the distribution range of a Neotropical gladiator tree frog that shows elaborate reproduction (territoriality, complex courtship and female choice). We then incorporated molecular and landscape data to examine the roles of sexual selection, genetic drift and acoustic adaptation to the environment in call differentiation, i.e. the acoustic adaptation hypothesis (AAH). We found that calls varied more than morphology among populations, but differences in calls or morphological traits were not explained by genetic differentiation. We found no evidence for the AAH, but a significant relationship in the opposite direction regarding call frequencies suggests an indirect role of sexual selection. Differentiation on call traits that are associated with individual discrimination and/or female attraction also corroborated an important role of sexual selection. We show that multitrait and multimechanism approaches can elucidate intricate processes leading to phenotypic variation among individuals and populations. We emphasize that studies of species with complex reproductive behaviours across their range may provide insights into different selective pressures leading to phenotypic differentiation.
more »
« less
- Award ID(s):
- 2151540
- PAR ID:
- 10429118
- Date Published:
- Journal Name:
- Biological Journal of the Linnean Society
- Volume:
- 139
- Issue:
- 3
- ISSN:
- 0024-4066
- Page Range / eLocation ID:
- 243 to 256
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated “natural experiments” in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus , a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions.more » « less
-
Abstract For chorusing males, optimally timing their calls relative to nearby rivals’ calls and fluctuations in background chorus noise is crucial for reproductive success. A caller’s acoustic environment will vary by chorus density and the properties of his chorus-mates’ calls and will fluctuate unpredictably due to chorusing dynamics emerging among his chorus-mates. Thus, callers must continuously monitor moment-to-moment fluctuations in the acoustic scene they perceive at the chorus for advantageous times to call. In live experimental choruses, we investigated the factors influencing túngara frog call-timing responses to chorus-mates’ calls on an interaction-by-interaction basis, revealing that intrinsic and extrinsic factors influenced call-timing decisions. Callers were more likely to overlap calls from smaller chorus-mates and chorus-mates at intermediate distances, as well as calls containing lower frequencies and exhibiting lower final amplitude minima. Consequently, variation among males in call properties led to variation in levels of call-interference received when calling in the same social environment. Additionally, callers were more likely to overlap chorus-mates’ calls after experiencing extended periods of inhibition and were less likely to overlap synchronized chorus-mates’ calls relative to single calls. In chorusing species, female choice is influenced by inter-caller dynamics, selecting for male call-timing strategies which, in turn, constitute the selective environment further refining these same strategies. Thus, understanding the specific factors driving call-timing decisions is essential for understanding how sexual selection operates in chorusing taxa.more » « less
-
Abstract The study of adaptation helps explain biodiversity and predict future evolution. Yet the process of adaptation can be difficult to observe due to limited phenotypic variation in contemporary populations. Furthermore, the scarcity of male fitness estimates has made it difficult to both understand adaptation and evaluate sexual conflict hypotheses. We addressed both issues in our study of two anther position traits in wild radish (Raphanus raphanistrum): anther exsertion (long filament − corolla tube lengths) and anther separation (long − short filament lengths). These traits affect pollination efficiency and are particularly interesting due to the unusually high correlations among their component traits. We measured selection through male and female fitness on wild radish plants from populations artificially selected to recreate ancestral variation in each anther trait. We found little evidence for conflicts between male and female function. We found strong evidence for stabilizing selection on anther exsertion and disruptive selection on anther separation, indicating positive and negative correlational selection on the component traits. Intermediate levels of exsertion are likely an adaptation to best contact small bees. The function of anther separation is less clear, but future studies might investigate pollen placement on pollinators and compare species possessing multiple stamen types.more » « less
-
ABSTRACT Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system using genome‐wide SNPs and environmental data to examine invasion history and identify genotype–environment associations indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid adaptation within invasive populations. We demonstrate strong genetic structuring among native regions which aligns with life history expectations, identifying southern New England as the source of invasive populations. Then, we identify putatively thermally adaptive loci across the native range but find no evidence of allele frequency shifts in invasive populations that suggest rapid adaptation to new environments. Our results indicate that while these loci may underpin local thermal adaptation in their native range, selection is relaxed in invasive populations, perhaps due to complex polygenic architecture underlying thermal traits and/or standing capacity for phenotypic plasticity. Given the prolific invasion ofUrosalpinx, our study suggests population success in new environments is influenced by factors other than selection on standing genetic variation that underlies local adaptation in the native range and highlights the importance of considering population history and environmental selection pressures when evaluating adaptive capacity.more » « less
An official website of the United States government

