Western North America is the archetypical Cordilleran orogenic system that preserves a Mesozoic to Cenozoic record of oceanic Farallon plate subduction-related processes. After prolonged Late Jurassic through mid-Cretaceous normal-angle Farallon plate subduction that produced the western North American batholith belt and retroarc fold-thrust belt, a period of low-angle, flat-slab subduction during Late Cretaceous−Paleogene time caused upper plate deformation to migrate eastward in the form of the Laramide basement-involved uplifts, which partitioned the original regional foreland basin. Major questions persist about the mechanism and timing of flat-slab subduction, the trajectory of the flat-slab, inter-plate coupling mechanism(s), and the upper-plate deformational response to such processes. Critical for testing various flat-slab hypotheses are the timing, rate, and distribution of exhumation experienced by the Laramide uplifts as recorded by low-temperature thermochronology. In this contribution, we address the timing of regional exhumation of the Laramide uplifts by combining apatite fission-track (AFT) and (U-Th-Sm)/He (AHe) data from 29 new samples with 564 previously published AFT, AHe, and zircon (U-Th)/He ages from Laramide structures in Arizona, Utah, Wyoming, Colorado, Montana, and South Dakota, USA. We integrate our results with existing geological constraints and with new regional cross sections to reconstruct the spatial and temporal history of exhumation driven by Laramide deformation from the mid-Cretaceous to Paleogene. Our analysis suggests a two-stage exhumation of the Laramide province, with an early phase of localized exhumation occurring at ca. 100−80 Ma in Wyoming and Montana, followed by a more regional period of exhumation at ca. 70−50 Ma. Generally, the onset of enhanced exhumation occurs earlier in the northern Laramide province (ca. 90 Ma) and later in the southern Laramide province (ca. 80 Ma). Thermal history models of selected samples along regional cross sections through Utah−Arizona−New Mexico and Wyoming−South Dakota show that exhumation occurred contemporaneously with deformation, implying that Laramide basement block exhumation is coupled with regional deformation. These results have implications for testing proposed migration pathway models of Farallon flat-slab and for how upper-plate deformation is expressed in flat-slab subduction zones in general.
more »
« less
Discovery of Permian–Triassic eclogite in northern Tibet establishes coeval subduction erosion along an ~3000-km-long arc
Eclogite bodies exposed across Tibet record a history of subduction-collision events that preceded growth of the Tibetan Plateau. Deciphering the time-space patterns of eclogite generation improves our knowledge of the preconditions for Cenozoic orogeny in Tibet and broader eclogite formation and/or exhumation processes. Here we report the discovery of Permo-Triassic eclogite in northern Tibet. U-Pb zircon dating and thermobarometry suggest eclogite-facies metamorphism at ca. 262–240 Ma at peak pressures of ∼2.5 GPa. Inherited zircons and geochemistry show the eclogite was derived from an upper-plate continental protolith, which must have experienced subduction erosion to transport the protolith mafic bodies to eclogite-forming conditions. The Dabie eclogites to the east experienced a similar history, and we interpret that these two coeval eclogite exposures formed by subduction erosion of the upper plate and deep trench burial along the same ∼3000-km-long north-dipping Permo-Triassic subduction complex. We interpret the synchroneity of eclogitization along the strike length of the subduction zone to have been driven by accelerated plate convergence due to ca. 260 Ma Emeishan plume impingement.
more »
« less
- Award ID(s):
- 1914501
- PAR ID:
- 10429130
- Date Published:
- Journal Name:
- Geology
- ISSN:
- 0091-7613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High-pressure metamorphic rocks occur as distinct belts along subduction zones and collisional orogens or as isolated blocks within orogens or mélanges and represent continental materials that were subducted to deep depths and subsequently exhumed to the shallow crust. Understanding the burial and exhumation processes and the sizes and shapes of the high-pressure blocks is important for providing insight into global geodynamics and plate tectonic processes. The South Beishan orogen of northwestern China is notable for the exposure of early Paleozoic high-pressure (HP), eclogite-facies metamorphic rocks, yet the tectonism associated with the HP metamorphism and mechanism of exhumation are poorly understood despite being key to understanding the tectonic evolution of the larger Central Asian Orogenic System. To address this issue, we examined the geometries, kinematics, and overprinting relationships of structures and determined the temperatures and timings of deformation and metamorphism of the HP rocks of the South Beishan orogen. Geochronological results show that the South Beishan orogen contains ca. 1.55–1.35 Ga basement metamorphic rocks and ca. 970–866 Ma granitoids generated during a regional tectono-magmatic event. Ca. 500–450 Ma crustal thickening and HP metamorphism may have been related to regional contraction in the South Beishan orogen. Ca. 900–800 Ma protoliths experienced eclogite-facies metamorphism (~1.2–2.1 GPa and ~700–800 °C) in thickened lower crust. These HP rocks were subsequently exhumed after ca. 450 Ma to mid-crustal depths in the footwall of a regional detachment fault during southeast-northwest–oriented crustal extension, possibly as the result of rollback of a subducted oceanic slab. Prior to ca. 438 Ma, north-south–oriented contraction resulted in isoclinal folding of the detachment fault and HP rocks. Following this contractional phase in the middle Mesozoic, the South Beishan orogen experienced thrusting interpreted to be the response to the closure of the Tethyan and Paleo-Asian Ocean domains. This contractional phase was followed by late Mesozoic extension and subsequent surface erosion that controlled exhumation of the HP rocks.more » « less
-
null (Ed.)The configuration of mid-ocean ridges subducted below North America prior to Oligocene time is unconstrained by seafloor isochrons and has been primarily inferred from upper-plate geology, including near-trench magmatism. However, many tectonic models are permitted from these constraints. We present a fully kinematic, plate tectonic reconstruction of the NW Cordillera since 60 Ma built by structurally unfolding subducted slabs, imaged by mantle tomography, back to Earth’s surface. We map in three-dimensions the attached Alaska and Cascadia slabs, and a detached slab below western Yukon (Canada) at 400−600 km depth that we call the “Yukon Slab.” Our restoration of these lower plates within a global plate model indicates the Alaska slab accounts for Pacific-Kula subduction since ca. 60 Ma below the Aleutian Islands whereas the Cascadia slab accounts for Farallon subduction since at least ca. 75 Ma below southern California, USA. However, intermediate areas show two reconstruction gaps that persist until 40 Ma. We show that these reconstruction gaps correlate spatiotemporally to published NW Cordillera near-trench magmatism, even considering possible terrane translation. We attribute these gaps to thermal erosion related to ridge subduction and model mid-ocean ridges within these reconstruction gap mid-points. Our reconstructions show two coeval ridge-trench intersections that bound an additional “Resurrection”-like plate along the NW Cordillera prior to 40 Ma. In this model, the Yukon slab represents a thermally eroded remnant of the Resurrection plate. Our reconstructions support a “northern option” Farallon ridge geometry and allow up to ∼1200 km Chugach terrane translation since Paleocene time, providing a new “tomographic piercing point” for the Baja-British Columbia debate.more » « less
-
Abstract The Mesozoic subduction history of the Paleo‐Pacific plate below the East Asian margin remains contentious, in part because the southern part is poorly understood. To address this, we conducted a sediment provenance study to constrain Mesozoic subduction history below West Sarawak, Borneo. A combination of detrital zircon U‐Pb geochronology, heavy minerals, trace element, and bulk rock Nd isotope data were used to identify the tectonic events. The overall maturity of mineral assemblages, dominantly felsic sources, abundant Precambrian‐aged zircons, and low εNd(0) values (average −13.07) seen in Late Triassic sedimentary rocks suggest a period of inactive subduction near Borneo. Slab shallowing subduction occurred between 200 and 170 Ma based on subdued magmatism and tectonic compression across West Sarawak. From c. 170 to 70 Ma there was widespread magmatism and we interpret the Paleo‐Pacific slab steepened. Collectively, we show the Paleo‐Pacific plate subduction had variable slab dip histories in Borneo.more » « less
-
Abstract In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension‐driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high‐pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well‐preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites recordP ~ 1.5 ± 0.2 GPa atT ~ 700 ± 20°C, but differ from each other in whole‐rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss atc.310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome‐margin eclogite zircon retains a widespread record of protolith age (c.470–450 Ma, the same as host gneiss protolith age), whereas dome‐core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust atc.310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low‐P/high‐Tconditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome.more » « less
An official website of the United States government

