skip to main content


This content will become publicly available on June 28, 2024

Title: Discovery of Permian–Triassic eclogite in northern Tibet establishes coeval subduction erosion along an ~3000-km-long arc
Eclogite bodies exposed across Tibet record a history of subduction-collision events that preceded growth of the Tibetan Plateau. Deciphering the time-space patterns of eclogite generation improves our knowledge of the preconditions for Cenozoic orogeny in Tibet and broader eclogite formation and/or exhumation processes. Here we report the discovery of Permo-Triassic eclogite in northern Tibet. U-Pb zircon dating and thermobarometry suggest eclogite-facies metamorphism at ca. 262–240 Ma at peak pressures of ∼2.5 GPa. Inherited zircons and geochemistry show the eclogite was derived from an upper-plate continental protolith, which must have experienced subduction erosion to transport the protolith mafic bodies to eclogite-forming conditions. The Dabie eclogites to the east experienced a similar history, and we interpret that these two coeval eclogite exposures formed by subduction erosion of the upper plate and deep trench burial along the same ∼3000-km-long north-dipping Permo-Triassic subduction complex. We interpret the synchroneity of eclogitization along the strike length of the subduction zone to have been driven by accelerated plate convergence due to ca. 260 Ma Emeishan plume impingement.  more » « less
Award ID(s):
1914501
NSF-PAR ID:
10429130
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Different crustal deformation histories between Tibet and the Pamir reflect along‐strike variations in geodynamics of the Tethys orogen. To investigate the less well‐documented deformation history of the Pamir, which has been a barrier in understanding the nature of these differences, we conducted an integrated study in the Kurgovat‐Vanch region, NW Pamir. The lithologies are primarily Ediacaran‐to‐Carboniferous metasedimentary rocks intruded by Carboniferous plutons, which then experienced Late Triassic to Early Jurassic regional metamorphism. Structural mapping and analyses document a low‐angle NW‐directed thrust fault, the Poshkharv thrust, separating the overlying upper‐greenschist facies Poshkharv complex from the underlying amphibolite facies Kurgovat complex. Regional geologic maps indicate the Poshkharv thrust continues for ∼300 km across the NW Pamir. Our study also documents another regional thrust fault, the top‐to‐the‐SE Vanch thrust that juxtaposes the Southern Kurgovat complex above the lower‐grade Vanch complex in the south. Biotite40Ar/39Ar thermochronology indicates Early Cretaceous movement on all structures with ∼135–125 Ma exhumation along the NW‐directed Poshkharv thrust and ∼125–115 Ma exhumation along the SE‐directed Vanch thrust. Regional crustal deformation in the Northern Pamir was formed in a Cretaceous retro‐arc setting, unrelated to the Cenozoic India‐Asia collision. Cretaceous deformation in the NW Pamir was broadly coeval with the NE Pamir, but preceded Cretaceous shortening and coeval arc magmatism in the Southern Pamir. We interpret Early Cretaceous thrusting and crustal thickening followed by southward migration of shortening and magmatic flare‐up in the Pamir to have resulted from a transition of Neotethys subduction from northward flat‐slab advancing to southward retreating.

     
    more » « less
  2. Abstract High-pressure metamorphic rocks occur as distinct belts along subduction zones and collisional orogens or as isolated blocks within orogens or mélanges and represent continental materials that were subducted to deep depths and subsequently exhumed to the shallow crust. Understanding the burial and exhumation processes and the sizes and shapes of the high-pressure blocks is important for providing insight into global geodynamics and plate tectonic processes. The South Beishan orogen of northwestern China is notable for the exposure of early Paleozoic high-pressure (HP), eclogite-facies metamorphic rocks, yet the tectonism associated with the HP metamorphism and mechanism of exhumation are poorly understood despite being key to understanding the tectonic evolution of the larger Central Asian Orogenic System. To address this issue, we examined the geometries, kinematics, and overprinting relationships of structures and determined the temperatures and timings of deformation and metamorphism of the HP rocks of the South Beishan orogen. Geochronological results show that the South Beishan orogen contains ca. 1.55–1.35 Ga basement metamorphic rocks and ca. 970–866 Ma granitoids generated during a regional tectono-magmatic event. Ca. 500–450 Ma crustal thickening and HP metamorphism may have been related to regional contraction in the South Beishan orogen. Ca. 900–800 Ma protoliths experienced eclogite-facies metamorphism (~1.2–2.1 GPa and ~700–800 °C) in thickened lower crust. These HP rocks were subsequently exhumed after ca. 450 Ma to mid-crustal depths in the footwall of a regional detachment fault during southeast-northwest–oriented crustal extension, possibly as the result of rollback of a subducted oceanic slab. Prior to ca. 438 Ma, north-south–oriented contraction resulted in isoclinal folding of the detachment fault and HP rocks. Following this contractional phase in the middle Mesozoic, the South Beishan orogen experienced thrusting interpreted to be the response to the closure of the Tethyan and Paleo-Asian Ocean domains. This contractional phase was followed by late Mesozoic extension and subsequent surface erosion that controlled exhumation of the HP rocks. 
    more » « less
  3. Abstract

    In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension‐driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high‐pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well‐preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites recordP ~ 1.5 ± 0.2 GPa atT ~ 700 ± 20°C, but differ from each other in whole‐rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss atc.310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome‐margin eclogite zircon retains a widespread record of protolith age (c.470–450 Ma, the same as host gneiss protolith age), whereas dome‐core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust atc.310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low‐P/high‐Tconditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome.

     
    more » « less
  4. Abstract

    The Klamath Mountains in northern California and southern Oregon are thought to record 200+ m.y. of subduction and terrane accretion, whereas the outboard Franciscan Complex records ocean‐continent subduction along the North American margin. Unraveling the Klamath Mountains' Late Jurassic history could help constrain this transition in subduction style. Key is the Mesozoic Condrey Mountain Schist (CMS), comprising, in part, a subduction complex that occupies a structural window through older, overlying central Klamath thrust sheets but with otherwise uncertain relationships to more outboard Klamath or Franciscan terranes. The CMS consists of two units (upper and lower), which could be correlated with (a) other Klamath terranes, (b) the Franciscan, or (c) neither based on regional structures and limited extant age data. Upper CMS protolith and metamorphic dates overlap with other Klamath terranes, but the lower CMS remains enigmatic. We used multiple geochronometers to constrain the timing of lower CMS deposition and metamorphism. Maximum depositional ages (MDAs) derived from detrital zircon geochronology of metasedimentary rocks are 153–135 Ma. Metamorphic ages from white mica K‐Ar and Rb‐Sr multi‐mineral isochrons from intercalated and coherently deformed metamafic lenses are 133–116 Ma. Lower CMS MDAs (<153 Ma) predominantly postdate other Klamath terrane ages, but subduction metamorphism appears to start before the earliest coherent Franciscan underplating (ca. 123 Ma). The lower CMS thus occupies a spatial and temporal position between the Klamath Mountains and Franciscan and preserves a non‐retrogressed record of the Franciscan Complex's early history (>123 Ma), otherwise only partially preserved in retrogressed Franciscan high grade blocks.

     
    more » « less
  5. The uplift history of the Sierra Nevada, California, is a topic of long-standing disagreement with much of it centered on the timing and nature of slip along the range-bounding normal fault along the east flank of the southern Sierra Nevada. The history of normal fault slip is important for characterizing the uplift history of the Sierra Nevada, as well as for characterizing the geologic and geodynamic factors that drove, and continue to drive, normal faulting. To address these issues, we completed new structural studies and extensive apatite (U-Th)/He (AHe) thermochronometry on samples collected from three vertical transects in the footwall to the east-dipping southern Sierra Nevada normal fault (SNNF). Our structural studies on bedrock fault planes show that the SNNF is a steeply (~70°) east-dipping normal fault. The new AHe data reveal two elevation-invariant AHe age arrays, indicative of two distinct periods of cooling and exhumation, which we interpret as initiation of normal faulting along the SNNF at ca. 28–27 Ma with a second phase of normal faulting at ca. 17–13 Ma. We argue that beginning in the late Oligocene, the SNNF marked the now long-standing stable western limit, or break-away zone, of the Basin and Range. Slip along SNNF, and the associated unloading of the footwall, likely resulted in two periods of uplift of Sierra Nevada during the late Cenozoic. Trench retreat, driven by westward motion of the North American plate, along the Farallon–North American subduction zone boundary, as well as the gravitationally unstable northern and southern Basin and Range pushing on the cold Sierra Nevada, likely drove the late Oligocene- aged normal slip along the SNNF and the similar-aged but generally local and minor extension within the Basin and Range. We posit that the thick proto–Basin and Range lithosphere was primed for late Oligocene extension by replacement of the steepening Farallon slab with hot and buoyant asthenosphere. While steepening of the Farallon slab had not yet reached the southern Sierra Nevada by late Oligocene time, we speculate that late Oligocene slip along the SNNF reactivated a late Cretaceous dextral shear zone as the Sierra Nevada block was pulled and pushed westward in response to trench retreat and gravitational potential energy. The dominant middle Miocene normal fault-slip history along the SNNF is contemporaneous with high-magnitude slip recorded along range-bounding normal faults across the Basin and Range, including the east-adjacent Inyo and White mountains, indicating that this period of extension was a major regional tectonic event. We infer that a combination of slab-driven trench retreat along the Juan de Fuca–North America subduction zone boundary and clockwise rotation of the southern ancestral Cascade Range superimposed on continental lithosphere pre-conditioned for extension drove this episode of middle Miocene normal slip along the SNNF and extension to the east across the Basin and Range. Transtensional plate motion along the Pacific–North America plate boundary, and likely a growing slab window, continued to drive extension along the SNNF and the western Basin and Range, but not until ca. 11 Ma when the Mendocino triple junction reached the latitude of our northernmost (U-Th)/He transect. 
    more » « less