skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient multigram procedure for the synthesis of large hydrazone-linked molecular cages
Covalently linked molecular cages can provide significant advantages (including, but not limited to enhanced thermal and chemical stability) over metal-linked coordination cages. Yet, while large coordination cages can now be created routinely, it is still challenging to create chemically robust, covalently linked molecular cages with large internal cavities. This fundamental challenge has made it difficult, for example, to introduce endohedral functional groups into covalent cages to enhance their practical utility (e.g., for selective guest recognition or catalysis), since the cavities would have simply been filled up with such endohedral functional groups in most cases. Here we now report the synthesis of some of the largest known covalently linked molecular tetrahedra. Our new covalent cages all contain 12 peripheral functional groups, which keep them soluble. They are formed from a common vertex, which aligns the hydrazide functions required for the hydrazone linkages with atropisomerism. While we previously reported this vertex as a building block for the smallest member of our hydrazone-linked tetrahedra, our original synthesis was not feasible to be carried out on the larger scales required to successfully access the larger tetrahedra. To overcome this synthetic challenge, we now present an improved synthesis of our vertex, which only requires a single chromatographic step (compared to 3 chromatographic purification steps, which were needed for the initial synthesis). Our new synthetic route enabled us to create a whole family of molecular cages with increasing size (all linked with hydrolytically stable hydrazone bonds), with our largest covalent cage featuring p-quarterphenyl linkers and the ability to encapsulate a hypothetical sphere of approximately 3 nm in diameter. These results now open up the possibility to introduce functional groups required for selective recognition and catalysis into chemically robust covalent cages (without blocking the cavities of the covalent cages).  more » « less
Award ID(s):
2317652
PAR ID:
10429185
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Organic Chemistry Frontiers
ISSN:
2052-4129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crystalline porous frameworks, such as covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated exceptional potential in diverse applications, including gas adsorption/separation, catalysis, sensing, electronic devices, etc. However, the building blocks for constructing ordered frameworks are typically limited to multisubstituted aromatic small molecules, and uncontrolled interpenetration has remained a long-standing challenge in the field. Shape-persistent macrocycles and molecular cages have garnered significant attention in supramolecular chemistry and materials science due to their unique structures and novel properties. Using such preporous shape-persistent 2D macrocycles or 3D cages as building blocks to construct extended networks is particularly appealing. This macrocycle-to-framework/cage-to-framework hierarchical assembly approach not only mitigates the issue of interpenetration but also enables the integration of diverse properties in an emergent fashion. Since our demonstration of the first organic cage framework (OCF) in 2011 and the first macrocycle-based ionic COFs (ICOFs) in 2015, substantial advancements have been made over the past decade. In this Account, we will summarize our contributions to the development of crystalline porous frameworks, consisting of shape-persistent macrocycles and molecular cages as preporous building blocks, via hierarchical dynamic covalent assembly. We will begin by reviewing representative design strategies and the synthesis of shape-persistent macrocycles and molecular cages from small molecule-based primary building blocks, emphasizing the critical role of dynamic covalent chemistry (DCvC). Next, we will discuss the further assembly of preporous macrocycle/cage-based secondary building blocks into extended frameworks, followed by an overview of their properties and applications. Finally, we will highlight the current challenges and future directions for this hierarchical assembly approach in the synthesis of crystalline porous frameworks. This Account offers valuable insights into the design and synthesis of functional porous frameworks, contributing to the advancement of this important field. 
    more » « less
  2. Connecting molecular building blocks by covalent bonds to form extended crystalline structures has caused a sharp upsurge in the field of porous materials, especially covalent organic frameworks (COFs), thereby translating the accuracy, precision, and versatility of covalent chemistry from discrete molecules to two-dimensional and three-dimensional crystalline structures. COFs are crystalline porous frameworks prepared by a bottom-up approach from predesigned symmetric units with well-defined structural properties such as a high surface area, distinct pores, cavities, channels, thermal and chemical stability, structural flexibility and functional design. Due to the tedious and sometimes impossible introduction of certain functionalities into COFs via de novo synthesis, pore surface engineering through judicious functionalization with a range of substituents under ambient or harsh conditions using the principle of coordination chemistry, chemical conversion, and building block exchange is of profound importance. In this review, we aim to summarize dynamic covalent chemistry and framework linkage in the context of design features, different methods and perspectives of pore surface engineering along with their versatile roles in a plethora of applications such as biomedical, gas storage and separation, catalysis, sensing, energy storage and environmental remediation. 
    more » « less
  3. This Account describes our efforts over the last decade to synthesize self-assembled metal–ligand cage complexes that display reactive functional groups on their interiors. This journey has taken us down a variety of research avenues, including studying the mechanism of reversible self-assembly, analyzing ligand self-sorting properties, post-assembly reactivity, molecular recognition, and binding studies, and finally reactivity and catalysis. Each of these individual topics are discussed here, as are the lessons learned along the way and the future research outlook. These self-assembled hosts are the closest mimics of enzymes to date, as they are capable of size- and shape-selective molecular recognition, substrate activation and turnover, as well as showing less common ‘biomimetic’ properties such as the ability to employ cofactors in reactivity, and alter the prevailing mechanism of the catalyzed reactions. 1 Introduction 2 Paddlewheels and Self-Sorting Behavior 3 First-Row Transition-Metal-Mediated Assembly: Sorting and Stereochemical Control 4 Post-Assembly Reactivity 5 Molecular Recognition and Catalysis 6 Conclusions and Outlook 
    more » « less
  4. Select hydrogen bond donors can catalyze reactions of ion pairs through the recognition of anions. This mode of action can be exploited in enantioselective catalysis if a suitable chiral hydrogen bond donor is applied. Beyond just anionic recognition, an enantioselective anion-binding catalyst often must host numerous non-covalent interactions, including hydrogen bonding, general base, π-π, and π-cation, to achieve high levels of enantiocontrol. Anion-binding catalysts can be strategically designed to support those non-covalent interactions required to render a process highly stereoselective. Tactics applied in anion-binding catalyst development include enhancing arene substituents for improved π-stacking, linking two anion-binding units together on a single scaffold, expanding types of functional groups for anion recognition, and building frameworks with bifunctional modes of action. The intent of this digest is to highlight observations that suggest as anion-binding catalyst designs advance, their associated synthetic methodologies for complex molecule construction become increasingly impressive. 
    more » « less
  5. Abstract Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click‐like η6‐arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small‐molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography‐free asymmetric reaction analysis are also demonstrated. 
    more » « less