- Award ID(s):
- 2114839
- NSF-PAR ID:
- 10429192
- Date Published:
- Journal Name:
- 2022 American Geophysical Union Fall Meeting: Chicago, IL
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report semiquantitative elemental data from X-ray fluorescence (XRF) scanning of Site U1558 sediment cores drilled during International Ocean Discovery Program Expeditions 390C and 393. These expeditions, together with Expeditions 395E and 390, form the South Atlantic Transect, which collected sediment and basement cores from the western flank of the southern Mid-Atlantic Ridge. XRF scanning of the continuous splice of Site U1558, using Holes U1558A and U1558F, was conducted at three acceleration voltages to capture a range of major, minor, and trace elements. At Site U1558, positive correlations exist between terrigenous-sourced elements (Al, Si, Ti, and Fe) and a negative correlation exists between the terrigenous-sourced elements and Ca. XRF geochemistry is correlated with lithologic changes, most notably at the boundary of Lithologic Units I and II, where Unit I is brown and reddish brown nannofossil-rich clay and Unit II is pink, pinkish white, pinkish gray, and light brown nannofossil ooze and chalk with varying amounts of clay and foraminifera. Peaks in XRF data align with the boundaries of Lithologic Subunits IIA and IIB and Subunits IIB and IIC.more » « less
-
The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are: 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf; 4. To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. A medical evacuation cut the expedition short by 1 week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods. Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines.more » « less
-
null (Ed.)The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic Ice Sheet outside the Antarctic Peninsula, including changes caused by substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct record of glacial history offshore from a drainage basin that receives ice exclusively from the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, warm Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting of the underside of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deep-water incursions control its position on the shelf; 4. To find evidence for earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called Resolution Drift, and penetrated to 794 m with 90% recovery. We collected almost-continuous cores from the Pleistocene through the Pliocene and into the late Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as bottom-water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. An unfortunate injury to a member of the ship's crew cut the expedition short by one week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to precisely indicate the position of ice or retreat of the ice sheet on the shelf. However, these sediments contained in the cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by higher microfossil abundance, greater bioturbation, and higher counts of IRD alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published records from the region suggests that the units interpreted as records of warmer time intervals in the core tie to interglacial periods and the units interpreted as deposits of colder periods tie to glacial periods. The cores from the two drill sites recovered sediments of purely terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded sands and gravel transported downslope from the shelf to the abyssal plain. The channel is likely the path of such sediments transported downslope by turbidity currents or other sediment-gravity flows. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica at least during longer time periods since the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy not only for the Amundsen Sea rise but also for the western Amundsen Sea along the Marie Byrd Land margin through a connecting network of seismic lines.more » « less
-
Abstract On high‐latitude continental margins sediment is supplied from land to the deep sea through a variety of processes, including iceberg and sea‐ice rafting, and bottom current transport. The accurate reconstruction of sediment fluxes from these sources through time is important in palaeoclimate reconstructions. The goal of this study was to assess a shift in the intensity of glacial processes, iceberg and sea‐ice rafting during the Pliocene through an investigation of coarse sediment deposited at the AND‐2A site in the Ross Sea and at International Ocean Discovery Program Site U1359 on the Antarctic continental rise. Terrigenous particle‐size distributions and suites of quartz grain microtextures in the sand fraction of the deep‐sea sediments were compared to those from Antarctic glaciomarine diamictites as a baseline for proximal glacial sediment in its source area. Using images acquired through Scanning Electron Microscopy, and following a quantitative approach, fewer immature and potentially glacially transported grains were found in Pliocene deep‐sea sand fractions than in ice‐contact sediments. Specifically, in the lower Pliocene interval silt and fine sand percentages are elevated, and microtextures in at least half of the sand fraction are inconsistent with a primary glacial origin. Larger numbers of chemically altered and abraded grains in the deep‐sea sand fraction, along with microtextures that are diagnostic of periglacial environments, suggest a role for eolian sediment transport. These results highlight the anomalous nature of high‐latitude sediment fluxes during prolonged periods of ice retreat. Furthermore, the identification of a significant offshore sediment flux during Antarctic deglaciation has implications for estimated nutrient supply to the Southern Ocean and the potential for high‐latitude climate feedbacks under warmer climate states.
-
null (Ed.)In far-field records, the response of the East Antarctic Ice Sheet during the Pliocene shows great variability under stable greenhouse gas forcing. However, the extent, mechanisms, and feedbacks related to Pliocene Antarctic ice-sheet dynamics are poorly known from near-field archives. Here we investigate the sediment dispersal path of coarse sediment deposited as ice-rafted debris (IRD) at IODP Site U1359 on the Antarctic Wilkes Land continental rise to assess the relative importance of iceberg and sea ice rafting during the Pliocene. We analyze terrigenous particle size distributions and suites of quartz grain microtextures in ice-rafted sand in comparison to Antarctic ice-contact diamict from the Ross Sea as a baseline for glacial sediment. Using images acquired through Scanning Electron Microscopy (SEM), and following a quantitative approach, we find a smaller number of glacially weathered grains in Pliocene IRD than in ice-contact sediments, which suggests that 30-50% of the IRD is not of primary glacial or iceberg origin. Larger numbers of abraded and chemically altered grains in the IRD, along with microtextures that are diagnostic of periglacial environments, suggest a role for eolian sediment transport onto the sea ice during periods of deglaciation and then transfer to the seafloor as sea ice breaks up. Our findings are entirely consistent with modeling of the land surface exposure and surface wind field during Pliocene ice retreat. These results have implications for the interpretation of sand-dominated IRD records as proxies for ice-sheet dynamics, as well as atmospheric and oceanographic feedbacks in the high-latitude climate system.more » « less