skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data report: X-ray fluorescence scanning of sediment cores, IODP Expedition 390/393 Site U1558, South Atlantic Transect
We report semiquantitative elemental data from X-ray fluorescence (XRF) scanning of Site U1558 sediment cores drilled during International Ocean Discovery Program Expeditions 390C and 393. These expeditions, together with Expeditions 395E and 390, form the South Atlantic Transect, which collected sediment and basement cores from the western flank of the southern Mid-Atlantic Ridge. XRF scanning of the continuous splice of Site U1558, using Holes U1558A and U1558F, was conducted at three acceleration voltages to capture a range of major, minor, and trace elements. At Site U1558, positive correlations exist between terrigenous-sourced elements (Al, Si, Ti, and Fe) and a negative correlation exists between the terrigenous-sourced elements and Ca. XRF geochemistry is correlated with lithologic changes, most notably at the boundary of Lithologic Units I and II, where Unit I is brown and reddish brown nannofossil-rich clay and Unit II is pink, pinkish white, pinkish gray, and light brown nannofossil ooze and chalk with varying amounts of clay and foraminifera. Peaks in XRF data align with the boundaries of Lithologic Subunits IIA and IIB and Subunits IIB and IIC.  more » « less
Award ID(s):
1326927
PAR ID:
10500562
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
International Ocean Discovery Program
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program Expedition reports
Volume:
390/393
Issue:
203
ISSN:
2377-3189
Subject(s) / Keyword(s):
International Ocean Discovery Program JOIDES Resolution Expedition 390 Expedition 393 Expedition 390C Expedition 395E South Atlantic Transect South Atlantic Ocean Atlantic Ocean Site U1558 XRF Core Scanning Paleocene Eocene Oligocene Miocene
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. International Ocean Discovery Program (IODP) Expeditions 390C, 395E, 390, and 393 recovered deepwater sediments from the western flank of the Mid-Atlantic Ridge in the South Atlantic Ocean along the South Atlantic Transect (SAT) at ~31°S. Collectively, these expeditions recovered ~2 km of sediment cores that have the potential to capture key features of Cenozoic climate change. In this report, we show semiquantitative bulk elemental results from X-ray fluorescence (XRF) scanning of the sediment cores from IODP Site U1560 recovered during Expeditions 395E and 393. The oceanic basement at this site is ~15 My old, making it the second youngest of the SAT sites located west of the Mid-Atlantic Ridge. Here, XRF data are compared with pass-through magnetic susceptibility and natural gamma radiation of the sediment cores, measured aboard JOIDES Resolution. The resulting trends and correlations highlight elemental variations through time, mainly reflecting lithologic and compositional differences. At Site U1560, Ca counts reflect the occurrence of nannofossil ooze, which is the dominant lithology for the whole site. In the Miocene-aged Lithologic Units IE–IA from 140 to 50 m core composite depth below seafloor (CCSF), several high-intensity spikes of detrital elements (i.e., Fe, Ti, Al, Si, and Zr) correspond to intervals of clay-rich nannofossil ooze. Detrital elemental counts in the entire Pliocene record (50 to ~25 m CCSF) are the lowest. A sharp shift is observed at the Pliocene/Pleistocene boundary at ~25 m CCSF, with the uppermost Pleistocene record showing high-frequency and high-intensity variations in siliciclastic elements, which correlates well with the pass-through magnetic susceptibility. 
    more » « less
  2. Site U1557 is the deepest and one of the oldest sites drilled during International Ocean Discovery Program Expeditions 390C, 395E, 390, and 393 on the South Atlantic Transect. It differs from the nearby Site U1556, which also sits on early Paleocene crust, by its stratigraphically expanded Paleocene–Eocene section. Here, we present the results of programmatic X-ray fluorescence (XRF) core scanning of the entire thickness of the sedimentary section at Site U1557. We find a major shift in XRF geochemistry at the boundary between Lithologic Units I and II, coincident with a shift in spectral gamma ray and magnetic susceptibility, as well as a shift from alternating pelagic carbonate and pelagic clay in Unit I to pelagic carbonate in Unit II. Within Unit I, shifts in major elemental composition of core material track alternations between carbonate-rich and clay-rich intervals. 
    more » « less
  3. During International Ocean Discovery Program (IODP) Expeditions 390C, 395E, 390, and 393, deepwater sediments were recovered from the western flank of the southern Mid-Atlantic Ridge along a crustal flow line at ~31°S. This multidisciplinary experiment allowed the recovery of data fundamental to reconstructing past climate changes as well as variations in ocean circulation, productivity, and chemistry (i.e., fluctuations in the carbonate compensation depth) in the South Atlantic Ocean. Here, we report semiquantitative elemental results from X-ray fluorescence (XRF) scanning of the sediment package cored at IODP Site U1559 in the South Atlantic Ocean. Located at 15°02.0941′W, Site U1559 is the easternmost site of the South Atlantic Transect and the closest to the Mid-Atlantic Ridge, located on ~6.6. Ma ocean crust. The XRF data are also compared with magnetic susceptibility and natural gamma radiation measured on the R/V JOIDES Resolution to assess correlations with the different lithologic units/subunits. At Site U1559, sediments are predominantly nannofossil ooze with varying amounts of foraminifera, which is reflected by the dominant Ca counts. Trends in elemental counts reflect the slight variations in siliciclastic materials within the Pleistocene. Major shifts in elemental counts were observed at the sharp contact between Pliocene–Pleistocene Subunits IC and ID, as well as the Miocene–Pliocene transition. 
    more » « less
  4. International Ocean Discovery Program (IODP) Site U1556, located on a basement high above Site U1557, is one of the oldest sites drilled on the South Atlantic Transect with a basement age of ~61 Ma. Here, we present semiquantitative X-ray fluorescence core scan data from the Site U1556 splice and compare them with shipboard magnetic susceptibility and natural gamma ray (NGR) measurements to characterize elemental composition changes downcore. Elements primarily associated with detrital (e.g., Al, Fe, K, Ti, and Zr) and biogenic (e.g., Ca) sources are inversely correlated. Biogenic and detrital sourced elements vary synchronously with magnetic susceptibility and NGR measurements following alternations between silty clay and calcareous nannofossil ooze/chalk in Unit I, whereas biogenic sourced elements tend to dominate Unit II, corresponding to a lithology change to predominantly calcareous nannofossil ooze/chalk. 
    more » « less
  5. Semiquantitative elemental results from X-ray fluorescence (XRF) scanning of sediment cores from International Ocean Discovery Program (IODP) Site U1574 in the Vøring Plateau, Norwegian Margin, are presented in this report. XRF elemental data were collected every 1 cm from a stratigraphically complete and continuous cored section with 102% recovery from the sea bottom to ~170 meters below seafloor in Hole U1574C. We report raw element intensities (counts) for Al, Si, K, Ca, Ti, Fe, Br, Sr, and Zr and identify covariation patterns consistent with lithofacies variations. Our high-resolution XRF scanning was conducted to better characterize the sediment depositional history at Site U1574 and to aid interpretation of past environmental and oceanographic conditions in the Norwegian Margin, targeting the earliest incursion of deep water into the young North Atlantic Ocean during the Early to Middle Eocene. The high-resolution XRF data also may help improve the age-depth model for the sediment succession at Site U1574. 
    more » « less