skip to main content


Title: Six-electron organic redoxmers for aqueous redox flow batteries
We have developed a novel molecular design that enables six-electron redox activity in fused phenazine-based organic scaffolds. Combined electrochemical and spectroscopic tests successfully confirm the two-step 6e − redox mechanism. This work offers an opportunity for achieving energy-dense redox flow batteries, on condition that the solubility and stability issues are addressed.  more » « less
Award ID(s):
2055222
NSF-PAR ID:
10429277
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
58
Issue:
95
ISSN:
1359-7345
Page Range / eLocation ID:
13226 to 13229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemical redox reactions between redox shuttles and lithium-ion battery particles have applications in electrochemical systems including redox-mediated flow batteries, photo-assisted lithium-ion batteries, and lithium-ion battery overcharge protection. These previous studies, combined with interest in chemical redox of battery materials in general, has resulted in previous reports of the chemical oxidation and/or reduction of solid lithium-ion materials. However, in many of these reports, a single redox shuttle is the focus and/or the experimental conditions are relatively limited. Herein, a study of chemical redox for a series of redox shuttles reacted with a lithium-ion battery cathode material will be reported. Both oxidation and reduction of the solid material with redox shuttles as a function of time will be probed using ferrocene derivatives with different half-wave potentials. The progression of the chemical redox was tracked by using electrochemical analysis of the redox shuttles in a custom electrochemical cell, and rate constants for chemical redox were extracted from using two different models. This study provides evidence that redox shuttle-particle interactions play a role in the overall reaction rate, and more broadly support that this experimental method dependent on electrochemical analysis can be applied for comparison of redox shuttles reacting with solid electroactive materials.

     
    more » « less
  2. Redox targeting reactions between lithium-ion battery materials and redox shuttles have been proposed to design high energy density redox flow batteries. Designing these batteries would require a deeper understanding of the kinetics of redox targeting reactions and the phase transformation of the materials involved. In this study, the oxidation and reduction of lithium iron phosphate, LiFePO4, via chemical and electrochemical routes will be compared. Ultraviolet-visible spectroscopy was used as a technique to characterize the extent of chemical lithiation/delithiation during chemical redox of LiFePO4, while the electrochemical redox was characterized using battery coin cells. The kinetic parameters extracted using the Johnson–Mehl–Avrami–Erofeyev–Kolomogorov model suggested that chemical redox was slower than electrochemical redox within the experimental regimes. Calculated apparent activation energies suggested the limitations in the chemical redox rate were due to different processes than the electrochemical redox. In addition, asymmetry observed for oxidation and reduction of LiFePO4materials will be discussed. As pairs of solid battery electroactive particles and soluble redox shuttles are designed, tools and analysis such as those in this study will be needed for interrogating and comparing electrochemical and chemical oxidation and reduction of the solid particles to understand and design these systems.

     
    more » « less
  3. Catechol-based materials possess diverse properties that are especially well-suitable for redox-based bioelectronics. Previous top-down, systems-level property measurements have shown that catechol-polysaccharide films ( e.g. , catechol-chitosan films) are redox-active and allow electrons to flow through the catechol/quinone moieties via thermodynamically-constrained redox reactions. Here, we report that catechol-chitosan films are also photothermally responsive and enable near infrared (NIR) radiation to be transduced into heat. When we simultaneously stimulated catechol-chitosan films with NIR and redox inputs, times-series measurements showed that the responses were reversible and largely independent. Fundamentally, these top-down measurements suggest that the flow of energy through catechol-based materials via the redox-based molecular modality and the electromagnetic-based optical modality can be independent. Practically, this work further illustrates the potential of catecholic materials for bridging bio-device communication because it enables communication through both short-range redox modalities and long-range electromagnetic modalities. 
    more » « less
  4. Abstract

    Reduction–oxidation (redox) reactions provide a distinct modality for biological communication that is fundamentally different from the more‐familiar ion‐based electrical modality. Biology uses these two modalities for communication through different systems (immune versus nervous), and uses different mechanisms to control the flow of the charge carriers: the flow of soluble ions is controlled using structural barriers (i.e., membranes) and gates (e.g., membrane‐spanning protein channels), while the flow of insoluble electrons is controlled using redox‐reaction networks. Here, a simple electrochemical approach to pattern catechols onto a flexible polysaccharide hydrogel is reported and it is demonstrated that the patterned catechol regions serve as nodes for the mediated flow of electrons through redox reactions. Electron flow through this node involves the switching of binary redox states (oxidized and reduced) and this node's redox state can be detected (i.e., “read”) by passively observing its optical absorbance, or actively switching its redox‐state electrochemically. Further, this catechol node can be switched through biological mechanisms, and this enables the fabricated catechol node to be embedded within biochemical redox reaction networks to facilitate the spanning of bio‐electronic communication. Thus, it is envisioned that catechols can emerge as a molecular equivalent to a transistor for miniaturize‐able, deployable and sustainable redox‐linked bioelectronics.

     
    more » « less
  5. Aberrant regulation of metabolic kinases by altered redox homeostasis substantially contributes to aging and various diseases, such as diabetes. We found that the catalytic activity of a conserved family of fructosamine-3-kinases (FN3Ks), which are evolutionarily related to eukaryotic protein kinases, is regulated by redox-sensitive cysteine residues in the kinase domain. The crystal structure of the FN3K homolog fromArabidopsis thalianarevealed that it forms an unexpected strand-exchange dimer in which the ATP-binding P-loop and adjoining β strands are swapped between two chains in the dimer. This dimeric configuration is characterized by strained interchain disulfide bonds that stabilize the P-loop in an extended conformation. Mutational analysis and solution studies confirmed that the strained disulfides function as redox “switches” to reversibly regulate the activity and dimerization of FN3K. Human FN3K, which contains an equivalent P-loop Cys, was also redox sensitive, whereas ancestral bacterial FN3K homologs, which lack a P-loop Cys, were not. Furthermore, CRISPR-mediated knockout of FN3K in human liver cancer cells altered the abundance of redox metabolites, including an increase in glutathione. We propose that redox regulation evolved in FN3K homologs in response to changing cellular redox conditions. Our findings provide insights into the origin and evolution of redox regulation in the protein kinase superfamily and may open new avenues for targeting human FN3K in diabetic complications.

     
    more » « less