skip to main content

Title: Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements
We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive (“b-dot”) probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large ( R M > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach–Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of [Formula: see text], where [Formula: see text] is the average ionization and T e is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic ( M S ∼ 8), super-Alfvénic ( M A ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and [Formula: see text] measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate three-dimensional (3-D) bow shocks in a highly collisional magnetized aluminium plasma, generated during the ablation phase of an exploding wire array on the MAGPIE facility (1.4 MA, 240 ns). Ablation of plasma from the wire array generates radially diverging, supersonic ( $M_S \sim 7$ ), super-Alfvénic ( $M_A > 1$ ) magnetized flows with frozen-in magnetic flux ( $R_M \gg 1$ ). These flows collide with an inductive probe placed in the flow, which serves both as the obstacle that generates the magnetized bow shock, and as a diagnostic of the advected magnetic field. Laser interferometry along two orthogonal lines of sight is used to measure the line-integrated electron density. A detached bow shock forms ahead of the probe, with a larger opening angle in the plane parallel to the magnetic field than in the plane normal to it. Since the resistive diffusion length of the plasma is comparable to the probe size, the magnetic field decouples from the ion fluid at the shock front and generates a hydrodynamic shock, whose structure is determined by the sonic Mach number, rather than the magnetosonic Mach number of the flow. The 3-D simulations performed using the resistive magnetohydrodynamic (MHD) code Gorgon confirm this picture, but under-predict the anisotropy observed in the shape of the experimental bow shock, suggesting that non-MHD mechanisms may be important for modifying the shock structure. 
    more » « less
  2. The fluid Taylor scale is measured in the Bryn Mawr Experiment (BMX) of the Bryn Mawr Plasma Laboratory and examined as a potential dissipation scale of magnetic turbulence within the plasma. We present the first laboratory measurements of the Taylor scale of a turbulent magnetized plasma through multi-point correlations of broadband magnetic fluctuations. From spatial and temporal correlations, respectively, the measured Taylor scales are [Formula: see text] and [Formula: see text]. These measurements are on the same order of magnitude as estimated ion dissipation scales within the BMX plasma with ion inertial scales between [Formula: see text] and ion gyroscales between [Formula: see text]. From these measurements, a magnetic Reynolds number can be computed. Since Taylor scale values are determined using multi-point correlations and a Richardson extrapolation technique, an estimate of the magnetic Reynolds number can be found without the added complication of specifying a model of microscopic diffusivity, a parameter often difficult to obtain experimentally.

    more » « less
  3. Abstract

    General relativistic magnetohydrodynamic (GRMHD) simulations of black hole tilted disks—where the angular momentum of the accretion flow at large distances is misaligned with respect to the black hole spin—commonly display standing shocks within a few to tens of gravitational radii from the black hole. In GRMHD simulations of geometrically thick, optically thin accretion flows, applicable to low-luminosity sources like Sgr A* and M87*, the shocks have transrelativistic speed, moderate plasma beta (the ratio of ion thermal pressure to magnetic pressure isβpi1∼ 1–8), and low sonic Mach number (the ratio of shock speed to sound speed isMs∼ 1–6). We study such shocks with 2D particle-in-cell simulations, and we quantify the efficiency and mechanisms of electron heating for the special case of preshock magnetic fields perpendicular to the shock direction of propagation. We find that the postshock electron temperatureTe2exceeds the adiabatic expectationTe2,adby an amountTe2/Te2,ad10.0016Ms3.6, nearly independent of the plasma beta and of the preshock electron-to-ion temperature ratioTe1/Ti1, which we vary from 0.1 to unity. We investigate the heating physics forMs∼ 5–6 and find that electron superadiabatic heating is governed by magnetic pumping atTe1/Ti1= 1, whereas heating byB-parallel electric fields (i.e., parallel to the local magnetic field) dominates atTe1/Ti1= 0.1. Our results provide physically motivated subgrid prescriptions for electron heating at the collisionless shocks seen in GRMHD simulations of black hole accretion flows.

    more » « less

    In star-forming clouds, high velocity flow gives rise to large fluctuations of density. In this work, we explore the correlation between velocity magnitude (speed) and density. We develop an analytic formula for the joint probability distribution function (PDF) of density and speed, and discuss its properties. In order to develop an accurate model for the joint PDF, we first develop improved models of the marginalized distributions of density and speed. We confront our results with a suite of 12 supersonic isothermal simulations with resolution of $1024^3$ cells in which the turbulence is driven by 3 different forcing modes (solenoidal, mixed, and compressive) and 4 rms Mach numbers (1, 2, 4, 8). We show, that for transsonic turbulence, density and speed are correlated to a considerable degree and the simple assumption of independence fails to accurately describe their statistics. In the supersonic regime, the correlations tend to weaken with growing Mach number. Our new model of the joint and marginalized PDFs are a factor of 3 better than uncorrelated, and provides insight into this important process.

    more » « less
  5. This work experimentally investigates the pressure-driven flow of a pure Newtonian fluid through three-dimensional (3D) porous media models. The porous media model consists of square arrays of rods that also could be interpreted as a periodic tandem rod arrangement. We employed a time-resolved three-dimensional particle tracking velocimetry (3D Shake-the-Box) technique for a range of Reynolds numbers [Formula: see text] to observe flow structures and vortex formation between the rods in porous media structures with different porosities of [Formula: see text] which corresponds to the spacing ratio of [Formula: see text], where L is the distance between the centers of the rods, and D is the diameter of the rods. For all the examined cases, we further analyzed the effect of the Reynolds number and the spacing ratio on the instantaneous and averaged patterns of velocity, vorticity, and the other flow parameters after obtaining the two-dimensional velocity fields using the bin-averaging method. We observed both symmetrical and asymmetrical patterns of structure and recirculation regions between the rods depending on the Reynolds number and spacing ratio. Increasing the Reynolds number reduced the symmetrical patterns of flow structures with respect to the centerline of the gap region, while the spacing ratio was randomly affecting the symmetry degree. Vortex shedding was considerable for the two examined high Reynolds numbers of Re = 444 and Re = 890 behind the upstream rod as the porosity increased. The backward movement of the reattachment point has been observed by increasing the Reynolds number. 
    more » « less