Geophysical and astrophysical fluid flows are typically driven by buoyancy and strongly constrained at large scales by planetary rotation. Rapidly rotating Rayleigh–Bénard convection (RRRBC) provides a paradigm for experiments and direct numerical simulations (DNS) of such flows, but the accessible parameter space remains restricted to moderately fast rotation rates (Ekman numbers$${ {Ek}} \gtrsim 10^{-8}$$), while realistic$${Ek}$$for geo- and astrophysical applications are orders of magnitude smaller. On the other hand, previously derived reduced equations of motion describing the leading-order behaviour in the limit of very rapid rotation ($$ {Ek}\to 0$$) cannot capture finite rotation effects, and the physically most relevant part of parameter space with small but finite$${Ek}$$has remained elusive. Here, we employ the rescaled rapidly rotating incompressible Navier–Stokes equations (RRRiNSE) – a reformulation of the Navier–Stokes–Boussinesq equations informed by the scalings valid for$${Ek}\to 0$$, recently introduced by Julienet al.(2024) – to provide full DNS of RRRBC at unprecedented rotation strengths down to$$ {Ek}=10^{-15}$$and below, revealing the disappearance of cyclone–anticyclone asymmetry at previously unattainable Ekman numbers ($${Ek}\approx 10^{-9}$$). We also identify an overshoot in the heat transport as$${Ek}$$is varied at fixed$$\widetilde { {Ra}} \equiv {Ra}{Ek}^{4/3}$$, where$$Ra$$is the Rayleigh number, associated with dissipation due to ageostrophic motions in the boundary layers. The simulations validate theoretical predictions based on thermal boundary layer theory for RRRBC and show that the solutions of RRRiNSE agree with the reduced equations at very small$${Ek}$$. These results represent a first foray into the vast, largely unexplored parameter space of very rapidly rotating convection rendered accessible by RRRiNSE.
more »
« less
Simulations of radiatively cooled magnetic reconnection driven by pulsed power
Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and$$P_{1/3}$$multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number$$M_A \approx 1.5$$), supersonic (Sonic Mach number$$M_S \approx 4-5$$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio$$L/\delta \approx 100$$, Lundquist number$$S_L \approx 400$$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate =$$\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.
more »
« less
- Award ID(s):
- 2213898
- PAR ID:
- 10501826
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 90
- Issue:
- 2
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Well-resolved direct numerical simulations (DNS) have been performed of the flow in a smooth circular pipe of radius$$R$$and axial length$$10{\rm \pi} R$$at friction Reynolds numbers up to$$Re_\tau =5200$$using the pseudo-spectral code OPENPIPEFLOW. Various turbulence statistics are documented and compared with other DNS and experimental data in pipes as well as channels. Small but distinct differences between various datasets are identified. The friction factor$$\lambda$$overshoots by$$2\,\%$$and undershoots by$$0.6\,\%$$the Prandtl friction law at low and high$$Re$$ranges, respectively. In addition,$$\lambda$$in our results is slightly higher than in Pirozzoliet al.(J. Fluid Mech., vol. 926, 2021, A28), but matches well the experiments in Furuichiet al.(Phys. Fluids, vol. 27, issue 9, 2015, 095108). The log-law indicator function, which is nearly indistinguishable between pipe and channel up to$$y^+=250$$, has not yet developed a plateau farther away from the wall in the pipes even for the$$Re_\tau =5200$$cases. The wall shear stress fluctuations and the inner peak of the axial turbulence intensity – which grow monotonically with$$Re_\tau$$– are lower in the pipe than in the channel, but the difference decreases with increasing$$Re_\tau$$. While the wall value is slightly lower in the channel than in the pipe at the same$$Re_\tau$$, the inner peak of the pressure fluctuation shows negligible differences between them. The Reynolds number scaling of all these quantities agrees with both the logarithmic and defect-power laws if the coefficients are properly chosen. The one-dimensional spectrum of the axial velocity fluctuation exhibits a$$k^{-1}$$dependence at an intermediate distance from the wall – also seen in the channel. In summary, these high-fidelity data enable us to provide better insights into the flow physics in the pipes as well as the similarity/difference among different types of wall turbulence.more » « less
-
We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$.more » « less
-
Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing.more » « less
-
Abstract Define theCollatz map$${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$$on the positive integers$$\mathbb {N}+1 = \{1,2,3,\dots \}$$by setting$${\operatorname {Col}}(N)$$equal to$$3N+1$$whenNis odd and$$N/2$$whenNis even, and let$${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$$denote the minimal element of the Collatz orbit$$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $$. The infamousCollatz conjectureasserts that$${\operatorname {Col}}_{\min }(N)=1$$for all$$N \in \mathbb {N}+1$$. Previously, it was shown by Korec that for any$$\theta> \frac {\log 3}{\log 4} \approx 0.7924$$, one has$${\operatorname {Col}}_{\min }(N) \leq N^\theta $$for almost all$$N \in \mathbb {N}+1$$(in the sense of natural density). In this paper, we show that foranyfunction$$f \colon \mathbb {N}+1 \to \mathbb {R}$$with$$\lim _{N \to \infty } f(N)=+\infty $$, one has$${\operatorname {Col}}_{\min }(N) \leq f(N)$$for almost all$$N \in \mathbb {N}+1$$(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a$$3$$-adic cyclic group$$\mathbb {Z}/3^n\mathbb {Z}$$at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.more » « less
An official website of the United States government

