Abstract The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with % of its stars strongly enhanced inr-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence ofr-process-enhanced stars demonstrates that ther-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and ther-process nucleosynthesis to be less than 500 Myr. This measurement rules out anr-process source with a delay time of several Gyr or more, such as GW170817.
more »
« less
Metal Mixing in the r-process Enhanced Ultrafaint Dwarf Galaxy Reticulum II*
Abstract The ultrafaint dwarf galaxy Reticulum II was enriched by a single rare and prolific r -process event. The r -process content of Reticulum II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find 72 − 12 + 10 % of the stars are r -process-enhanced, with a mean [ Ba / H ] = − 1.68 ± 0.07 and unresolved intrinsic dispersion σ [Ba/H] <0.20. The homogeneous r -process abundances imply that Ret II’s metals are well mixed by the time the r -enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultrafaint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r -process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r -enhanced stars in Ret II formed in the absence of substantial pristine gas accretion, perhaps indicating that ≈70% of Ret II stars formed after reionization.
more »
« less
- PAR ID:
- 10429367
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 3
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.more » « less
-
null (Ed.)ABSTRACT We present atmospheric parameters and abundances for chemical elements from carbon to barium in metal-poor stars in Segue 1 (seven stars), Coma Berenices (three stars), and Triangulum ii (one star) ultrafaint dwarf galaxies (UFDs). The effective temperatures rely on new photometric observations in the visible and infra-red bands, obtained with the 2.5 m telescope of the SAI MSU Caucasian observatory. Abundances of up to fourteen chemical elements were derived under the non-local thermodynamic equilibrium (NLTE) line formation, and LTE abundances were obtained for up to five more elements. For the first time, we present abundance of oxygen in Seg 1 S1 and S4, silicon in ComaBer S2 and Tri ii S40, potassium in Seg 1 S1−S6 and ComaBer S1−S3, and barium in Seg 1 S7. Three stars in Segue 1, two stars in Coma Berenices, and Triangulum ii star have very low [Na/Mg] of −1.08 to −1.67 dex, which is usually attributed in the literature to an odd–even effect produced by nucleosynthesis in massive metal-free stars. We interpret this chemical property as a footprint of first stars, which is not blurred due to a small number of nucleosynthesis events that contributed to chemical abundance patterns of the sample stars. Our NLTE abundances of Sr and Ba in Coma Berenices, Segue 1, and Triangulum ii report on lower [Sr/Ba] abundance ratio in the UFDs compared to that in classical dwarf spheroidal galaxies and the Milky Way halo. However, in UFDs, just as in massive galaxies, [Sr/Ba] is not constant and it can be higher than the pure r-process ratio. We suggest a hypothesis of Sr production in metal-poor binaries at the earliest epoch of galactic evolution.more » « less
-
ABSTRACT We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H] = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.more » « less
-
Abstract The growing number of Milky Way satellites detected in recent years has introduced a new focus for stellar abundance analysis. Abundances of stars in satellites have been used to probe the nature of these systems and their chemical evolution. However, for most satellites, only centrally located stars have been examined. This paper presents an analysis of three stars in the Tucana V system, one in the inner region and two at ∼10′ (7–10 half-light radii) from the center. We find a remarkable chemical diversity between the stars. One star exhibits enhancements in rapid neutron-capture elements (anr-I star), and another is highly enhanced in C, N, and O but with low neutron-capture abundances (a CEMP-no star). The metallicities of the stars analyzed span more than 1 dex from [Fe/H] = −3.55 to −2.46. This, combined with a large abundance range of other elements like Ca, Sc, and Ni, confirms that Tuc V is an ultrafaint dwarf (UFD) galaxy. The variation in abundances, highlighted by [Mg/Ca] ratios ranging from +0.89 to −0.75, among the stars demonstrates that the chemical enrichment history of Tuc V was very inhomogeneous. Tuc V is only the second UFD galaxy in which stars located at large distances from the galactic center have been analyzed, along with Tucana II. The chemical diversity seen in these two galaxies, driven by the composition of the noncentral member stars, suggests that distant member stars are important to include when classifying faint satellites and that these systems may have experienced more complex chemical enrichment histories than previously anticipated.more » « less
An official website of the United States government

