skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transition to the viscoelastic regime in the thinning of polymer solutions
In this study, we investigate the transition between the Newtonian and the viscoelastic regimes during the pinch-off of droplets of dilute polymer solutions and discuss its link to the coil-stretch transition. The detachment of a drop from a nozzle is associated with the formation of a liquid neck that causes the divergence of the local stress in a vanishingly small region. If the liquid is a polymer solution, this increasing stress progressively unwinds the polymer chains, up to a point where the resulting increase in the viscosity slows down drastically the thinning. This threshold to a viscoelastic behavior corresponds to a macroscopic strain rate. In the present study, we characterize the variations of with respect to the polymer concentration and molar weight, to the solvent viscosity, and to the nozzle size, i.e. , the weight of the drop. We provide empirical scaling laws for these variations. We also analyze the thinning dynamics at the transition and show that it follows a self-similar dynamics controlled by the time scale  c −1 . This characteristic time is different and always shorter than the relaxation time of the polymer.  more » « less
Award ID(s):
1944844
PAR ID:
10429441
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
16
ISSN:
1744-683X
Page Range / eLocation ID:
3147 to 3156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    When a droplet is generated, the ligament connecting the drop to the nozzle thins down and eventually pinches off. Adding solid particles to the liquid phase leads to a more complex dynamic, notably by increasing the shear viscosity. Moreover, it introduces an additional length scale to the system, the diameter of the particles, which eventually becomes comparable to the diameter of the ligament. In this paper, we experimentally investigate the thinning and pinch-off of drops of suspensions with two different sizes of particles. We characterize the thinning for different particle size ratios and different proportions of small particles. Long before the pinch-off, the thinning rate is that of an equivalent liquid whose viscosity is that of the suspension. Later, when the ligament thickness approaches the size of the large particles, the thinning accelerates and leads to an early pinch-off. We explain how the bidisperse particle size distribution lowers the viscosity by making the packing more efficient, which speeds up the thinning. This result can be used to predict the dynamics of droplet formation with bidisperse suspensions. 
    more » « less
  2. Jetting dynamics from bursting bubbles play a key role in mediating mass and momentum transport across the air–liquid interface, and have attracted widespread interest from researchers across disciplines. In marine environments, this phenomenon has drawn considerable attention due to its role in releasing biochemical contaminants, such as extracellular polymeric substances, into the atmosphere through aerosol production. These biocontaminants often exhibit non-Newtonian characteristics, yet the physics of bubble bursting with a rheologically complex layer at the bubble–liquid interface remains largely unexplored. In this study, we experimentally investigate the jetting dynamics of bubble bursting events in the presence of such a polymeric compound layer. Using bubbles coated by a polyethylene oxide solution, we document the cavity collapse and jetting dynamics produced by bubble bursting. At a fixed polymer concentration, the jet velocity increases while the jet radius decreases with an increasing compound layer volume fraction, as a result of stronger capillary wave damping due to capillary wave separation at the compound interface as well as the formation of smaller cavity cone angles during bubble cavity collapse. These dynamics produce smaller and more numerous jet drops. Meanwhile, as the polymer concentration increases, the jet velocity decreases while the jet radius increases for the same compound layer fraction due to the increasing viscoelastic stresses. In addition, fewer jet drops are ejected as the jets become slower and broader with increasing polymer concentration, as viscoelastic stresses persist throughout the jet formation and thinning process. We further obtain, for the first time, a regime map delineating the conditions for jet drop ejection versus no jet drop ejection in bursting bubbles coated with a polymeric compound layer. Our results may provide new insights into the mechanisms of mass transport of organic materials in bubble-mediated aerosolization processes, advancing our understanding of marine biology and environmental science. 
    more » « less
  3. Abstract Polymer composites with salts or conductive fillers are promising for various solid‐state energy storage applications, where processability is often determined by their rheological properties. This study investigates the effect of lithium salts and conductive fillers on the rheological behavior of polylactic acid (PLA)‐based composites. We specifically examine how these additives influence complex viscosity and the interactions between the salt, fillers, and polymer. Our findings reveal that adding salt to the polymer reduces its viscosity, whereas adding conductive fillers imparts a shear‐thinning property, which is advantageous for thermal processing methods like thermal drawing, injection molding, or 3D printing. The combination of salt and conductive fillers results in multifunctional electrode‐electrolyte composites with enhanced shear‐thinning behavior and improved storage modulus. Characterizations through x‐ray diffraction, electrical measurements, and transmission electron microscopy link the electrical properties and morphology with rheological behavior. The formation of a robust filler network in these composites ensures stable viscoelastic behavior across a range of temperatures and frequencies, indicating their suitability for efficient manufacturing of polymer‐based solid‐state electrode‐electrolyte composites via thermal processing. HighlightsShear‐thinning behavior enhanced by conductive fillers.Viscosity increased with CB and CNT fillers, forming robust networks.Salt reduced viscosity but filler networks dominated flow behavior.Filler combinations led to stable viscoelastic properties across temperatures.Polymer electrolyte–electrode composites improved processability and storage modulus. 
    more » « less
  4. Abstract The viscosity of fluids and their dependence on shear rate, known as shear thinning, plays a critical role in applications ranging from lubricants and coatings to biomedical and food-processing industries. Traditional models such as the Carreau and Eyring theories offer competing explanations for shear-thinning behavior. The Carreau model attributes viscosity reduction to molecular distortions, while the Eyring model describes shear thinning as a stress-induced transition over an activation energy barrier. This work proposes an extended-Eyring model that incorporates stress-dependent activation volumes, bridging key aspects of both theories. In modifying transition-state theory by using an Evans-Polanyi perturbation analysis, we derive a generalized viscosity equation that accounts for the molecular-scale rearrangements governing fluid flow. The model is validated against computational and experimental data, including shear-thinning behavior of pure squalane and polyethylene oxide (PEO) aqueous solutions. Comparative analysis with Carreau-Yasuda and conventional Eyring models demonstrates excellent accuracy in predicting viscosity trends over a wide range of shear rates. The introduction of stress-dependent activation volumes provides a description of molecular exchange kinetics accounting for structural reorganization under shear. These findings offer a unified framework for modeling shear thinning and have broad implications for designing advanced lubricants, polymer solutions, and complex fluids with tailored flow properties. Graphical Abstract 
    more » « less
  5. Liquid crystal elastomers (LCEs) are a class of smart elastomers exhibiting unusual mechanical behavior, including large energy dissipation and soft elasticity under uniaxial tensile loading. LCEs are composed of liquid crystal molecules, called mesogens, linked by a network of polymer chains. During deformation, the mesogens orient in the direction of the loading, leading to soft elasticity, which is an increase in strain at constant stress. The combination of mesogen rotation and intrinsic polymer viscoelasticity leads to a nonlinear viscoelastic soft elastic behavior. The aim of this paper is to investigate the coupling between the viscoelastic mechanisms and soft elasticity in main chain LCEs. We propose a rheological model in which the mesogen rotation during deformation is represented by a reversible slider while viscoelastic relaxation mechanisms are modeled as series of Maxwell elements coupled or decoupled with mesogen rotation. Fitting this model to experimental data demonstrate that the coupling between polymer chain viscoelasticity and mesogen rotation is partial, i.e. the long-time relaxation mechanisms are coupled and the short-time relaxation mechanisms are decoupled from mesogen rotation. Furthermore, we show that the viscosity of mesogen rotation is not necessary to properly predict the elastic modulus during the soft elasticity but it is needed to properly predict the initiation of the phenomenon. \end{abstract} 
    more » « less