skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupling between viscoelasticity and soft elasticity in main-chain nematic Liquid Crystal Elastomers
Liquid crystal elastomers (LCEs) are a class of smart elastomers exhibiting unusual mechanical behavior, including large energy dissipation and soft elasticity under uniaxial tensile loading. LCEs are composed of liquid crystal molecules, called mesogens, linked by a network of polymer chains. During deformation, the mesogens orient in the direction of the loading, leading to soft elasticity, which is an increase in strain at constant stress. The combination of mesogen rotation and intrinsic polymer viscoelasticity leads to a nonlinear viscoelastic soft elastic behavior. The aim of this paper is to investigate the coupling between the viscoelastic mechanisms and soft elasticity in main chain LCEs. We propose a rheological model in which the mesogen rotation during deformation is represented by a reversible slider while viscoelastic relaxation mechanisms are modeled as series of Maxwell elements coupled or decoupled with mesogen rotation. Fitting this model to experimental data demonstrate that the coupling between polymer chain viscoelasticity and mesogen rotation is partial, i.e. the long-time relaxation mechanisms are coupled and the short-time relaxation mechanisms are decoupled from mesogen rotation. Furthermore, we show that the viscosity of mesogen rotation is not necessary to properly predict the elastic modulus during the soft elasticity but it is needed to properly predict the initiation of the phenomenon. \end{abstract}  more » « less
Award ID(s):
2238035
PAR ID:
10504286
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of the Mechanics and Physics of Solids
Volume:
187
Issue:
C
ISSN:
0022-5096
Page Range / eLocation ID:
105612
Subject(s) / Keyword(s):
Liquid crystal elastomers soft elasticity viscoelasticity mesogen polydomain-monodomain transition constitutive modeling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liquid crystalline elastomers (LCEs) exhibit reversible macroscopic shape changes in response to a temperature change. Mechanistically, the thermomechanical response of LCEs is associated with the thermotropic nature of the liquid crystalline units (i.e., mesogens) in the polymer network. Upon heating, the mesogen‐mesogen interaction in the LCE is disrupted, which transitions the organization of the polymer network from an ordered to a disordered state. The disruption in order affects the volumetric distribution of macromolecular chains in the polymer network and results in a large directional contraction along the alignment axis. Prior reports detail that the magnitude of actuation depends strongly on the connectivity of LC mesogens (i.e., main‐chain or pendant) within the network. In this study, pendant end‐on mesogens are introduced into a primarily main‐chain supramolecular LCE composition to further reduce crosslink density while preserving overall LC concentration. The introduction of pendant end‐on mesogens to supramolecular LCE compositions further improves thermomechanical properties by enhancing strain‐temperature coupling and reducing actuation temperatures. By systematically varying the concentrations of end‐on and supramolecular mesogens, direct relationships are established between mesogen composition, polymer architecture, and the resulting thermomechanical performance of LCEs. 
    more » « less
  2. Abstract Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and reversible shape‐changing behaviors, and so serve as potentially transformative materials for various protective and actuation applications. This study contributes to filling a critical knowledge gap in the field by investigating the microscale mesogen organization of nematic LCEs with diverse macroscopic deformation. A polarized Fourier transform infrared light spectroscopy (FTIR) tester is utilized to examine the mesogen organizations, including both the nematic director and mesogen order parameter. Three types of material deformation are analyzed: uniaxial tension, simple shear, and bi‐axial tension, which are all commonly encountered in practical designs of LCEs. By integrating customized loading fixtures into the FTIR tester, mesogen organizations are examined across varying magnitudes of strain levels for each deformation mode. Their relationships with macroscopic stress responses are revealed and compared with predictions from existing theories. Furthermore, this study reveals unique features of mesogen organizations that have not been previously reported, such as simultaneous evolutions of the mesogen order parameter and nematic director in simple shear and bi‐axial loading conditions. Overall, the findings presented in this study offer significant new insights for future rational designs, modeling, and applications of LCE materials. 
    more » « less
  3. Liquid crystal elastomers (LCEs) are composed of rod-like liquid crystal (LC) molecules (mesogens) linked into elastomeric polymer networks. They present a nematic phase with directionally ordered mesogens at room temperature and an isotropic phase with no order at high temperatures, enabling large thermal-induced deformation. As a result, LCEs have become promising candidates for new applications in soft robotics and shape morphing. LCEs are being actively studied in both experiment and theory in recent years. However, the fundamental relationship among synthesis, processing, and thermomechanical behaviors of modern LCEs are still largely unclear. This knowledge gap is further complicated by the various LCE types, including polydomain, monodomain, nematic-genesis, and isotropic-genesis, each fabricated and used under different experimental conditions and applications. Here we explore synthesis-processing-property relationships in thermomechanics of various LCEs, by combining fabrication, characterization, and theoretical modeling. We adapt the widely used two-stage method to fabricate isotropic-genesis polydomain LCEs and nematic-genesis LCEs with varying pre-stretches during polymerization. We characterize the thermal-induced spontaneous deformation and the temperature-dependent uniaxial stress-stretch responses of the LCEs. We identify a new relationship among the soft elasticity, the thermal-induced spontaneous deformation, and the pre-stretch during polymerization, in the LCEs under study. Building on classical theories and our experimental results, we develop a constitutive model to describe the uniaxial behaviors of various LCEs. The theoretical predictions agree well with the experimental results on uniaxial stress-stretch responses at different temperatures. Finally, we discuss the remaining challenges and future opportunities in synthesis-processing-property relationships of LCEs. 
    more » « less
  4. Liquid crystal elastomers (LCEs) are made of liquid crystal molecules integrated with rubber-like polymer networks. An LCE exhibits both the thermotropic property of liquid crystals and the large deformation of elastomers. It can be monodomain or polydomain in the nematic phase and transforms to an isotropic phase at elevated temperature. These features have enabled various new applications of LCEs in robotics and other fields. However, despite substantial research and development in recent years, thermomechanical coupling in polydomain LCEs remains poorly studied, such as their temperature-dependent mechanical response and stretch-influenced isotropic-nematic phase transition. This knowledge gap severely limits the fundamental understanding of the structure-property relationship, as well as future developments of LCEs with precisely controlled material behaviors. Here, we construct a theoretical model to investigate the thermomechanical coupling in polydomain LCEs. The model includes a quasi-convex elastic energy of the polymer network and a free energy of mesogens. We study the working conditions where a polydomain LCE is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the material, and the free energy of mesogens governs their first-order nematic-isotropic phase transition. The evolution of the mechanical phase diagram and the order parameter with temperature is predicted and discussed. Unique temperature-dependent mechanical behaviors of the polydomain LCE that have never been reported before are shown in their stress-stretch curves. These results are hoped to motivate future fundamental studies and new applications of thermomechanical LCEs. 
    more » « less
  5. Abstract Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed given the notorious difficulty synthesizing sufficiently large monodomain devices. Here, we use direct-ink writing 3D printing to fabricate bulk (>cm 3 ) monodomain LCE devices and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to 3000 s −1 , our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts – with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation. 
    more » « less