skip to main content


Title: Particulate suspension coating of capillary tubes
The displacement of a suspension of particles by an immiscible fluid in a capillary tube or in porous media is a canonical configuration that finds application in a large number of natural and industrial applications, including water purification, dispersion of colloids and microplastics, coating and functionalization of tubings. The influence of particles dispersed in the fluid on the interfacial dynamics and on the properties of the liquid film left behind remain poorly understood. Here, we study the deposition of a coating film on the walls of a capillary tube induced by the translation of a suspension plug pushed by air. We identify the different deposition regimes as a function of the translation speed of the plug, the particle size, and the volume fraction of the suspension. The thickness of the coating film is characterized, and we show that similarly to dip coating, three coating regimes are observed, liquid only, heterogeneous, and thick films. We also show that, at first order, the thickness of films thicker than the particle diameter can be predicted using the effective viscosity of the suspension. Nevertheless, we also report that for large particles and concentrated suspensions, a shear-induced migration mechanism leads to local variations in volume fraction and modifies the deposited film thickness and composition.  more » « less
Award ID(s):
1944844
NSF-PAR ID:
10429451
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
42
ISSN:
1744-683X
Page Range / eLocation ID:
8124 to 8133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypothesis: The dip coating of suspensions made of monodisperse non-Brownian spherical particles dispersed in a Newtonian fluid leads to different coating regimes depending on the ratio of the particle diameter to the thickness of the film entrained on the substrate. In particular, dilute particles dispersed in the liquid are entrained only above a threshold value of film thickness. In the case of anisotropic particles, in particular fibers, the smallest characteristic dimension will control the entrainment of the particle. Furthermore, it is possible to control the orientation of the anisotropic particles depending on the substrate geometry. In the thick film regime, the Landau-Levich-Derjaguin model remains valid if one account for the change in viscosity. Experiment: To test the hypotheses, we performed dip-coating experiments with dilute suspensions of non-Brownian fibers with different length-to-diameter aspect ratios. We characterize the number of fibers entrained on the surface of the substrate as a function of the withdrawal velocity, allowing us to estimate a threshold capillary number below which all the particles remain in the liquid bath. Besides, we measure the angular distribution of the entrained fibers for two different substrate geometries: flat plates and cylindrical rods. We then measure the film thickness for more concentrated fiber suspensions. Findings: The entrainment of the fibers on a flat plate and a cylindrical rod is primarily controlled by the smaller characteristic length of the fibers: their diameter. At first order, the entrainment threshold scales similarly to that of spherical particles. The length of the fibers only appears to have a minor influence on the entrainment threshold. No preferential alignment is observed for non-Brownian fibers on a flat plate, except for very thin films, whereas the fibers tend to align themselves along the axis of a cylindrical rod for a large enough ratio of the fiber length to the radius of the cylindrical rod. The Landau-Levich-Derjaguin law is recovered for more concentrated suspension by introducing an effective capillary number accounting for the change in viscosity. 
    more » « less
  2. null (Ed.)
    A fibre withdrawn from a bath of a dilute particulate suspension exhibits different coating regimes depending on the physical properties of the fluid, the withdrawal speed, the particle sizes and the radius of the fibre. Our experiments indicate that only the liquid without particles is entrained for thin coating films. Beyond a threshold capillary number, the fibre is coated by a liquid film with entrained particles. We systematically characterize the role of the capillary number, the particle size and the fibre radius on the threshold speed for particle entrainment. We discuss the boundary between these two regimes and show that the thickness of the liquid film at the stagnation point controls the entrainment process. The radius of the fibre provides a new degree of control in capillary filtering, allowing greater control over the size of the particles entrained in the film. 
    more » « less
  3. Abstract

    Micro-scale inorganic particles (d > 1 µm) have reduced surface area and higher density, making them negatively buoyant in most dip-coating mixtures. Their controlled delivery in hard-to-reach places through entrainment is possible but challenging due to the density mismatch between them and the liquid matrix called liquid carrier system (LCS). In this work, the particle transfer mechanism from the complex density mismatching mixture was investigated. The LCS solution was prepared and optimized using a polymer binder and an evaporating solvent. The inorganic particles were dispersed in the LCS by stirring at the just suspending speed to maintain the pseudo suspension characteristics for the heterogeneous mixture. The effect of solid loading and the binder volume fraction on solid transfer has been reported at room temperature. Two coating regimes are observed (i) heterogeneous coating where particle clusters are formed at a low capillary number and (ii) effective viscous regime, where full coverage can be observed on the substrate. ‘Zero’ particle entrainment was not observed even at a low capillary number of the mixture, which can be attributed to the presence of the binder and hydrodynamic flow of the particles due to the stirring of the mixture. The critical film thickness for particle entrainment is$${h}^{*}=0.16a$$h=0.16afor 6.5% binder and$${h}^{*}=0.26a$$h=0.26afor 10.5% binder, which are smaller than previously reported in literature. Furthermore, the transferred particle matrices closely follow the analytical expression (modified LLD) of density matching suspension which demonstrate that the density mismatch effect can be neutralized with the stirring energy. The findings of this research will help to understand this high-volume solid transfer technique and develop novel manufacturing processes.

     
    more » « less
  4. Dip coating consists of withdrawing a substrate from a bath to coat it with a thin liquid layer. This process is well understood for homogeneous fluids, but heterogeneities, such as particles dispersed in liquid, lead to more complex situations. Indeed, particles introduce a new length scale, their size, in addition to the thickness of the coating film. Recent studies have shown that, at first order, the thickness of the coating film for monodisperse particles can be captured by an effective capillary number based on the viscosity of the suspension, providing that the film is thicker than the particle diameter. However, suspensions involved in most practical applications are polydisperse, characterized by a wide range of particle sizes, introducing additional length scales. In this study, we investigate the dip coating of suspensions having a bimodal size distribution of particles. We show that the effective viscosity approach is still valid in the regime where the coating film is thicker than the diameter of the largest particles, although bidisperse suspensions are less viscous than monodisperse suspensions of the same solid fraction. We also characterize the intermediate regime that consists of a heterogeneous coating layer and where the composition of the film is different from the composition of the bath. A model to predict the probability of entraining the particles in the liquid film depending on their sizes is proposed and captures our measurements. In this regime, corresponding to a specific range of withdrawal velocities, capillarity filters the large particles out of the film. 
    more » « less
  5. At large scales, particulate suspensions flow like homogeneous viscous liquids, but at the particle scale, the role of the local heterogeneity brought by the particles cannot be neglected. The volume fraction also matters; in dense suspensions, particulate effects can be felt across distances much larger than the particle diameter. Therefore, whether a suspension should behave as a homogeneous or heterogeneous fluid is a matter of scale. Here, we consider the canonical situation of the pinch-off of suspension drops to study the behavior of suspensions at different scales. Initially, the filament of suspension thins down like a homogeneous liquid until reaching a critical thickness at which the thinning accelerates. Eventually, a region devoid of particles appears, and the breakup occurs similarly to a homogeneous viscous liquid. Although this problem have been studied for almost 20 y, the role of heterogeneity in the acceleration of the pinch-off is still not understood. We show that the onset of heterogeneity corresponds to the dislocation of the suspensions where local fluctuations in particle concentration increase. We derive scaling laws for the dynamics in the heterogeneous regime and develop a model to predict the coherence length at which the discrete nature of the particles appears, and we demonstrate that this length depends both on the particle size and on the volume fraction of the suspension. We extend this approach to polydisperse suspensions. Our work sheds light on the mesoscopic scale below which starts the heterogeneous regime and a continuum approach is not valid anymore. 
    more » « less