skip to main content


Title: Kepler K2 Campaign 9 – II. First space-based discovery of an exoplanet using microlensing
ABSTRACT We present K2-2016-BLG-0005Lb, a densely sampled, planetary binary caustic-crossing microlensing event found from a blind search of data gathered from Campaign 9 of the Kepler K2 mission (K2C9). K2-2016-BLG-0005Lb is the first bound microlensing exoplanet discovered from space-based data. The event has caustic entry and exit points that are resolved in the K2C9 data, enabling the lens-source relative proper motion to be measured. We have fitted a binary microlens model to the Kepler data and to simultaneous observations from multiple ground-based surveys. Whilst the ground-based data only sparsely sample the binary caustic, they provide a clear detection of parallax that allows us to break completely the microlensing mass-position-velocity degeneracy and measure the planet’s mass directly. We find a host mass of 0.58 ± 0.04 M⊙ and a planetary mass of 1.1 ± 0.1 MJ. The system lies at a distance of 5.2 ± 0.2 kpc from Earth towards the Galactic bulge, more than twice the distance of the previous most distant planet found by Kepler. The sky-projected separation of the planet from its host is found to be 4.2 ± 0.3 au which, for circular orbits, deprojects to a host separation $a = 4.4^{+1.9}_{-0.4}$ au and orbital period $P = 13^{+9}_{-2}$ yr. This makes K2-2016-BLG-0005Lb a close Jupiter analogue orbiting a low-mass host star. According to current planet formation models, this system is very close to the host mass threshold below which Jupiters are not expected to form. Upcoming space-based exoplanet microlensing surveys by NASA’s Nancy Grace Roman Space Telescope and, possibly, ESA’s Euclid mission, will provide demanding tests of current planet formation models.  more » « less
Award ID(s):
2108414
NSF-PAR ID:
10429482
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
6350 to 6366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, q = 0.75–1.00 × 10−4 at 1σ. The binary-lens models with a resonant caustic and a brown-dwarf mass ratio are both excluded by Δχ2 > 70. The binary-source model can fit the anomaly well but is rejected by the ‘colour argument’ on the second source. From Bayesian analyses, it is estimated that the host star is likely a K or M dwarf located in the Galactic disc, the planet probably has a Neptune-mass, and the projected planet-host separation is $1.9^{+0.6}_{-0.7}$ or $4.6^{+1.4}_{-1.7}$  au, subject to the close/wide degeneracy. This is the third q < 10−4 planet from a high-magnification planetary signal (A ≳ 65). Together with another such planet, KMT-2021-BLG-0171Lb, the ongoing follow-up program for the KMTNet high-magnification events has demonstrated its ability to detect high-magnification planetary signals for q < 10−4 planets, which are challenging for the current microlensing surveys. 
    more » « less
  2. Abstract We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a 1.71 ± 0.27 M Jup planet orbiting a 0.69 ± 0.04 M ⊙ K-dwarf host star at a distance of 6.89 ± 0.77 kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet–host star projected separation is only weakly constrained due to the close-wide light-curve degeneracy; the 2 σ projected separation ranges are 0.6–1.0 au and 4.7–7.7 au for close and wide solutions, respectively. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis. Our Keck follow-up program has now measured lens-source separations for six planetary microlensing events, and five of these six events have host star masses above the median prediction under the assumption that assumes that all stars have an equal chance of hosting planets detectable by microlensing. This suggests that more massive stars may be more likely to host planets of a fixed mass ratio that orbit near or beyond the snow line. These results also indicate the importance of host star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASA’s Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events. 
    more » « less
  3. We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a short-duration anomaly (~0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ^{2} = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet M_{p}=3.26^{+0.83}_{-0.58} M_{J} orbiting an M dwarf M_{h} = 0.42^{+0.34}_{-0.23} M_{⊙} at a distance D_{L} = 5.83^{+1.04}_{-1.55} kpc. The projected star-planet separation is a_{⊥} = 2.18^{+0.58}_{-0.72} AU, which indicates that the planet lies beyond the snow line of the host star. 
    more » « less
  4. Aims. We investigate the microlensing data collected during the 2017–2019 seasons in the peripheral Galactic bulge fields with the aim of finding planetary signals in microlensing light curves observed with relatively sparse coverage. Methods. We first sort out lensing events with weak short-term anomalies in the lensing light curves from the visual inspection of all non-prime-field events, and then test various interpretations of the anomalies. From this procedure, we find two previously unidentified candidate planetary lensing events KMT-2017-BLG-0673 and KMT-2019-BLG-0414. It is found that the planetary signal of KMT-2017-BLG-0673 was produced by the source crossing over a planet-induced caustic, but it was previously missed because of the sparse coverage of the signal. On the other hand, the possibly planetary signal of KMT-2019-BLG-0414 was generated without caustic crossing, and it was previously missed due to the weakness of the signal. We identify a unique planetary solution for KMT-2017-BLG-0673. However, for KMT-2019-BLG-0414, we identify two pairs of planetary solutions, for each of which there are two solutions caused by the close-wide degeneracy, and a slightly less favored binary-source solution, in which a single lens mass gravitationally magnified a rapidly orbiting binary source with a faint companion (xallarap). Results. From Bayesian analyses, it is estimated that the planet KMT-2017-BLG-0673Lb has a mass of 3.7 −2.1 +2.2 M J , and it is orbiting a late K-type host star with a mass of 0.63 −0.35 +0.37 M ⊙ . Under the planetary interpretation of KMT-2010-BLG-0414L, a star with a mass of 0.74 −0.38 +0.43 M ⊙ hosts a planet with a mass of ~3.2–3.6 M J depending on the solution. We discuss the possible resolution of the planet-xallarap degeneracy of KMT-2019-BLG-0414 by future adaptive-optics observations on 30 m class telescopes. The detections of the planets indicate the need for thorough investigations of non-prime-field lensing events for the complete census of microlensing planet samples. 
    more » « less
  5. Aims. The light curve of the microlensing event KMT-2021-BLG-1898 exhibits a short-term central anomaly with double-bump features that cannot be explained by the usual binary-lens or binary-source interpretations. With the aim of interpreting the anomaly, we analyze the lensing light curve under various sophisticated models. Methods. We find that the anomaly is explained by a model, in which both the lens and source are binaries (2L2S model). For this interpretation, the lens is a planetary system with a planet/host mass ratio of q ~ 1.5 × 10 −3 , and the source is a binary composed of a turn off or a subgiant star and a mid K dwarf. The double-bump feature of the anomaly can also be depicted by a triple-lens model (3L1S model), in which the lens is a planetary system containing two planets. Among the two interpretations, the 2L2S model is favored over the 3L1S model not only because it yields a better fit to the data, by ∆ χ 2 = [14.3−18.5], but also the Einstein radii derived independently from the two stars of the binary source result in consistent values. According to the 2L2S interpretation, KMT-2021-BLG-1898 is the third planetary lensing event occurring on a binary stellar system, following MOA-2010-BLG-117 and KMT-2018-BLG-1743. Results. Under the 2L2S interpretation, we identify two solutions resulting from the close-wide degeneracy in determining the planet-host separation. From a Bayesian analysis, we estimate that the planet has a mass of ~0.7−0.8 M J , and it orbits an early M dwarf host with a mass of ~0.5 M ⊙ . The projected planet-host separation is ~1.9 AU and ~3.0 AU according to the close and wide solutions, respectively. 
    more » « less