skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights on Using Deep Learning to Spoof Inertial Measurement Units for Stealthy Attacks on UAVs
Unmanned Aerial Vehicles (UAVs) find increasing use in mission critical tasks both in civilian and military operations. Most UAVs rely on Inertial Measurement Units (IMUs) to calculate vehicle attitude and track vehicle position. Therefore, an incorrect IMU reading can cause a vehicle to destabilize, and possibly even crash. In this paper, we describe how a strategic adversary might be able to introduce spurious IMU values that can deviate a vehicle from its mission-specified path while at the same time evade customary anomaly detection mechanisms, thereby effectively perpetuating a “stealthy attack” on the system. We explore the feasibility of a Deep Neural Network (DNN) that uses a vehicle's state information to calculate the applicable IMU values to perpetrate such an attack. The eventual goal is to cause a vehicle to perturb enough from its mission parameters to compromise mission reliability, while, from the operator's perspective, the vehicle still appears to be operating normally.  more » « less
Award ID(s):
2246937 2145787
PAR ID:
10429508
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
MILCOM, Military Communications Conference
Page Range / eLocation ID:
1065 to 1069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless communication systems are susceptible to both unintentional interference and intentional jamming attacks. For mesh and ad-hoc networks, interference affects the network topology and can cause the network to partition, which may completely disrupt the applications or missions that depend on the network. Defensive techniques can be applied to try to prevent such disruptions to the network topology. Most previous research in this area is on improving network resilience by adapting the network topology when a jamming attack occurs. In this paper, we consider making a network more robust to jamming attacks before any such attack has happened. We consider a network in which the positions of most of the radios in the network are not under the control of the network operator, but the network operator can position a few “helper nodes” to add robustness against jamming. For instance, most of the nodes are radios on vehicles participating in a mission, and the helper nodes are mounted on mobile robots or UAVs. We develop techniques to determine where to position the helper nodes to maximize the robustness of the network to certain jamming attacks aimed at disrupting the network topology. Using our recent results for quickly determining how to attack a network, we use the harmony search algorithm to find helper node placements that maximize the number of jammers needed to disrupt the network 
    more » « less
  2. Estimating the position of the bucket or tool on an agricultural/construction vehicle is becoming increasingly important to enable operator assistance such as automation of repetitive movements. Such end-effector position estimation is normally done through measurement of individual actuator’s movements inside kinematic linkage mechanisms that move the end-effectors. This paper develops an alternate inertial measurement unit (IMU) based end-effector position estimation system that offers significant advantages of low cost and easy installation. An IMU located on a rotating linkage in a mechanism is used to estimate the angular motion of the linkage. Key challenges arise from the fact that the accelerometer signals of the IMU experience significant disturbances from dynamic accelerations and from vehicle and terrain-induced vibrations. First, an adaptive feedforward algorithm is used to remove the influence of vibrations on the accelerometer signals. Then a nonlinear observer is utilized to combine accelerometer and gyroscope signals and reject the influence of vehicle accelerations. Experimental results are presented from a laboratory test rig and preliminary experimental results from a full-scale tracked skid steer loader vehicle. The results show that an accuracy better than 1 degree in linkage orientation estimation is achieved in the presence of vibration disturbances. 
    more » « less
  3. null (Ed.)
    The use of semi-autonomous Unmanned Aerial Vehicles (UAVs or drones) to support emergency response scenarios, such as fire surveillance and search-and-rescue, has the potential for huge societal benefits. Onboard sensors and artificial intelligence (AI) allow these UAVs to operate autonomously in the environment. However, human intelligence and domain expertise are crucial in planning and guiding UAVs to accomplish the mission. Therefore, humans and multiple UAVs need to collaborate as a team to conduct a time-critical mission successfully. We propose a meta-model to describe interactions among the human operators and the autonomous swarm of UAVs. The meta-model also provides a language to describe the roles of UAVs and humans and the autonomous decisions. We complement the meta-model with a template of requirements elicitation questions to derive models for specific missions. We also identify common scenarios where humans should collaborate with UAVs to augment the autonomy of the UAVs. We introduce the meta-model and the requirements elicitation process with examples drawn from a search-and-rescue mission in which multiple UAVs collaborate with humans to respond to the emergency. We then apply it to a second scenario in which UAVs support first responders in fighting a structural fire. Our results show that the meta-model and the template of questions support the modeling of the human-on-the-loop human interactions for these complex missions, suggesting that it is a useful tool for modeling the human-on-the-loop interactions for multi-UAVs missions. 
    more » « less
  4. Abstract. Calculating solar-sensor zenith and azimuth angles for hyperspectral images collected by UAVs are important in terms of conducting bi-directional reflectance function (BRDF) correction or radiative transfer modeling-based applications in remote sensing. These applications are even more necessary to perform high-throughput phenotyping and precision agriculture tasks. This study demonstrates an automated Python framework that can calculate the solar-sensor zenith and azimuth angles for a push-broom hyperspectral camera equipped in a UAV. First, the hyperspectral images were radiometrically and geometrically corrected. Second, the high-precision Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) data for the flight path was extracted and corresponding UAV points for each pixel were identified. Finally, the angles were calculated using spherical trigonometry and linear algebra. The results show that the solar zenith angle (SZA) and solar azimuth angle (SAA) calculated by our method provided higher precision angular values compared to other available tools. The viewing zenith angle (VZA) was lower near the flight path and higher near the edge of the images. The viewing azimuth angle (VAA) pattern showed higher values to the left and lower values to the right side of the flight line. The methods described in this study is easily reproducible to other study areas and applications. 
    more » « less
  5. Intersection movement assist (IMA) is a connected vehicle (CV) application to improve vehicle safety. GPS spoofing attack is one major threat to the IMA application since inaccurate localization results may generate fake warnings that increase rear-end crashes, or cancel real warnings that may lead to angle or swipe crashes. In this work, we first develop a GPS spoofing attack model to trigger the IMA warning of entry vehicles at a roundabout driving scenario. The attack model can generate realistic trajectories while achieving the attack goal. To defend against such attacks, we further design a one-class classifier to distinguish the normal vehicle trajectories from the trajectories under attack. The proposed model is validated with a real-world data set collected from Ann Arbor, Michigan. Results show that although the attack model triggers the IMA warning in a short time (i.e., in a few seconds), the detection model can still identify the abnormal trajectories before the attack succeeds with low false positive and false negative rates. 
    more » « less