Abstract We report the analysis of four unambiguous planets and one possible planet from the subprime fields (Γ ≤ 1 hr−1) of the 2017 Korea Microlensing Telescope Network (KMTNet) microlensing survey, to complete the KMTNet AnomalyFinder planetary sample for the 2017 subprime fields. They are KMT-2017-BLG-0849, KMT-2017-BLG-1057, OGLE-2017-BLG-0364, and KMT-2017-BLG-2331 (unambiguous), as well as KMT-2017-BLG-0958 (possible). For the four unambiguous planets, the mean planet–host mass ratios,q, are (1.0, 1.2, 4.6, 13) × 10−4, the median planetary masses are (6.4, 24, 76, 171)M⊕, and the median host masses are (0.19, 0.57, 0.49, 0.40)M⊙, respectively, found from a Bayesian analysis. We have completed the Anomaly Finder planetary sample from the first 4 yr of KMTNet data (2016–2019), with 112 unambiguous planets in total, which nearly tripled the microlensing planetary sample. The “sub-Saturn desert” ( ) found in the 2018 and 2019 KMTNet samples is confirmed by the 2016 and 2017 KMTNet samples.
more »
« less
Systematic KMTNet Planetary Anomaly Search. VII. Complete Sample of q −4 Planets from the First 4 yr Survey
Abstract We present the analysis of seven microlensing planetary events with planet/host mass ratios q < 10 −4 : KMT-2017-BLG-1194, KMT-2017-BLG-0428, KMT-2019-BLG-1806, KMT-2017-BLG-1003, KMT-2019-BLG-1367, OGLE-2017-BLG-1806, and KMT-2016-BLG-1105. They were identified by applying the Korea Microlensing Telescope Network (KMTNet) AnomalyFinder algorithm to 2016–2019 KMTNet events. A Bayesian analysis indicates that all the lens systems consist of a cold super-Earth orbiting an M or K dwarf. Together with 17 previously published and three that will be published elsewhere, AnomalyFinder has found a total of 27 planets that have solutions with q < 10 −4 from 2016–2019 KMTNet events, which lays the foundation for the first statistical analysis of the planetary mass-ratio function based on KMTNet data. By reviewing the 27 planets, we find that the missing planetary caustics problem in the KMTNet planetary sample has been solved by AnomalyFinder. We also find a desert of high-magnification planetary signals ( A ≳ 65), and a follow-up project for KMTNet high-magnification events could detect at least two more q < 10 −4 planets per year and form an independent statistical sample.
more »
« less
- Award ID(s):
- 2108414
- PAR ID:
- 10429518
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 3
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We report the complete statistical planetary sample from the prime fields (Γ ≥ 2 h−1) of the 2019 Korea Microlensing Telescope Network (KMTNet) microlensing survey. We develop the optimized KMTNet AnomalyFinder algorithm and apply it to the 2019 KMTNet prime fields. We find a total of 13 homogeneously selected planets and report the analysis of three planetary events, KMT-2019-BLG-(1042,1552,2974). The planet–host mass ratios, q, for the three planetary events are 6.34 × 10−4, 4.89 × 10−3, and 6.18 × 10−4, respectively. A Bayesian analysis indicates the three planets are all cold giant planets beyond the snow line of their host stars. The 13 planets are basically uniform in log q over the range −5.0 < log q < −1.5. This result suggests that the planets below qbreak = 1.7 × 10−4 proposed by the MOA-II survey may be more common than previously believed. This work is an early component of a large project to determine the KMTNet mass-ratio function, and the whole sample of 2016–2019 KMTNet events should contain about 120 planets.more » « less
-
ABSTRACT We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, q = 0.75–1.00 × 10−4 at 1σ. The binary-lens models with a resonant caustic and a brown-dwarf mass ratio are both excluded by Δχ2 > 70. The binary-source model can fit the anomaly well but is rejected by the ‘colour argument’ on the second source. From Bayesian analyses, it is estimated that the host star is likely a K or M dwarf located in the Galactic disc, the planet probably has a Neptune-mass, and the projected planet-host separation is $$1.9^{+0.6}_{-0.7}$$ or $$4.6^{+1.4}_{-1.7}$$ au, subject to the close/wide degeneracy. This is the third q < 10−4 planet from a high-magnification planetary signal (A ≳ 65). Together with another such planet, KMT-2021-BLG-0171Lb, the ongoing follow-up program for the KMTNet high-magnification events has demonstrated its ability to detect high-magnification planetary signals for q < 10−4 planets, which are challenging for the current microlensing surveys.more » « less
-
Abstract We complete the analysis of all 2018 sub-prime-field microlensing planets identified by the KMTNet AnomalyFinder. Among the 9 previously unpublished events with clear planetary solutions, 6 are clearly planetary (OGLE-2018-BLG-0298, KMT-2018-BLG-0087, KMT-2018-BLG-0247, KMT-2018-BLG-0030, OGLE-2018-BLG-1119, and KMT-2018-BLG-2602), while the remaining 3 are ambiguous in nature. The above ordering of these events is made to facilitate grouping of their Bayesian estimates: the first two are lower-mass gas giants while the last four are Jovian-class planets; the first three most likely lie in the bulge, the last in the disk, and the remaining two are equally likely to be in either population. More specifically, these six planets have host masses M host = ( 0.69 − 0.30 + 0.34 , 0.10 − 0.05 + 0.14 , 0.29 − 0.14 + 0.28 , 0.51 − 0.31 + 0.43 , 0.48 − 0.28 + 0.35 , 0.66 − 0.36 + 0.42 ) M ⊙ , planet masses M planet = ( 0.14 − 0.06 + 0.07 , 0.23 − 0.12 + 0.32 , 2.11 − 1.04 + 2.09 , 1.45 − 0.88 + 1.23 , 0.91 − 0.52 + 0.66 , 1.15 − 0.63 + 0.73 ) M Jup , and distances D L = ( 6.54 − 1.23 + 0.95 , 7.02 − 1.15 + 1.03 , 6.76 − 1.24 + 0.99 , 6.48 − 1.96 + 1.28 , 5.76 − 2.48 + 1.43 , 4.31 − 1.84 + 1.97 ) kpc . In addition, there are 8 previously published sub-prime-field planets that were selected by the AnomalyFinder algorithm. Together with a companion paper on 2018 prime-field planets, this work lays the basis for comprehensive statistical studies. We carry out two such studies, one on caustic topologies and the other on the role of Gaia data. From the first, as expected, half (17/33) of the 2018 planets likely to enter the mass-ratio analysis have non-caustic-crossing anomalies. However, only 1 of the 5 noncaustic anomalies with planet-host mass ratio q < 10 −3 was discovered by eye (compared to 7 of the 12 with q > 10 −3 ), showing the importance of the semiautomated AnomalyFinder search. From the second, we find that Gaia has played a major role in the interpretation of 16% of the sample and a supplementary role in 6%.more » « less
-
ABSTRACT Follow-up observations of high-magnification gravitational microlensing events can fully exploit their intrinsic sensitivity to detect extrasolar planets, especially those with small mass ratios. To make followup observations more uniform and efficient, we develop a system, HighMagFinder, to automatically alert possible ongoing high-magnification events based on the real-time data from the Korea Microlensing Telescope Network (KMTNet). We started a new phase of follow-up observations with the help of HighMagFinder in 2021. Here we report the discovery of two planets in high-magnification microlensing events, KMT-2021-BLG-0171 and KMT-2021-BLG-1689, which were identified by the HighMagFinder. We find that both events suffer the ‘central-resonant’ caustic degeneracy. The planet-host mass-ratio is q ∼ 4.7 × 10−5 or q ∼ 2.2 × 10−5 for KMT-2021-BLG-0171, and q ∼ 2.5 × 10−4 or q ∼ 1.8 × 10−4 for KMT-2021-BLG-1689. Together with two other events, four cases that suffer such degeneracy have been discovered in the 2021 season alone, indicating that the degenerate solutions may have been missed in some previous studies. We also propose a quantitative factor to weight the probability of each solution from the phase space. The resonant interpretations for the two events are disfavoured under this consideration. This factor can be included in future statistical studies to weight degenerate solutions.more » « less
An official website of the United States government

