Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance.
more »
« less
Fell algebras, groupoids, and projections
Examples of Fell algebras with compact spectrum and trivial Dixmier-Douady invariant are constructed to illustrate differences with the case of continuous-trace C ∗ C^* -algebras. At the level of the spectrum, this translates to only assuming the spectrum is locally Hausdorff (rather than Hausdorff). The existence of (full) projections is the fundamental question considered. The class of Fell algebras studied here arises naturally in the study of Wieler solenoids and applications to dynamical systems will be discussed in a separate paper.
more »
« less
- Award ID(s):
- 2000057
- PAR ID:
- 10429551
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society
- Volume:
- 150
- Issue:
- 761
- ISSN:
- 0002-9939
- Page Range / eLocation ID:
- 4891 to 4907
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Discriminant ideals of noncommutative algebras , which are module finite over a central subalgebra , are key invariants that carry important information about , such as the sum of the squares of the dimensions of its irreducible modules with a given central character. There has been substantial research on the computation of discriminants, but very little is known about the computation of discriminant ideals. In this paper we carry out a detailed investigation of the lowest discriminant ideals of Cayley–Hamilton Hopf algebras in the sense of De Concini, Reshetikhin, Rosso and Procesi, whose identity fiber algebras are basic. The lowest discriminant ideals are the most complicated ones, because they capture the most degenerate behaviour of the fibers in the exact opposite spectrum of the picture from the Azumaya locus. We provide a description of the zero sets of the lowest discriminant ideals of Cayley–Hamilton Hopf algebras in terms of maximally stable modules of Hopf algebras, irreducible modules that are stable under tensoring with the maximal possible number of irreducible modules with trivial central character. In important situations, this is shown to be governed by the actions of the winding automorphism groups. The results are illustrated with applications to the group algebras of central extensions of abelian groups, big quantum Borel subalgebras at roots of unity and quantum coordinate rings at roots of unity.more » « less
-
In pursuit of a noncommutative spectrum functor, we argue that the Heyneman-Sweedler finite dual coalgebra can be viewed as a quantization of the maximal spectrum of a commutative affine algebra, integrating prior perspectives of Takeuchi, Batchelor, Kontsevich-Soibelman, and Le Bruyn. We introduce fully residually finite-dimensional algebras A as those with enough finite-dimensional representations to let A^o act as an appropriate depiction of the noncommutative maximal spectrum of A; importantly, this class includes affine noetherian PI algebras. In the case of prime affine algebras that are module-finite over their center, we describe how the Azumaya locus is represented in the finite dual. This is used to describe the finite dual of quantum planes at roots of unity as an endeavor to visualize the noncommutative space on which these algebras act as functions. Finally, we discuss how a similar analysis can be carried out for other maximal orders over surfaces.more » « less
-
null (Ed.)We present a classification theorem for separable amenable simple stably projectionless C -algebras with finite nuclear dimension whose K0 vanish on traces which satisfy the Universal Coefficient Theorem. One of C -algebras in the class is denoted by Z0 which has a unique tracial state, K_0(Z_0) = Z and K1(Z_0) = {0}. Let A and B be two separable amenable simple C -algebras satisfying the UCT. We show that A ⊗ Z_0 = B ⊗ Z_0 if and only if Ell(A ⊗ Z_0 ) = Ell(B ⊗ Z_0 ). A class of simple separable C -algebras which are approximately sub-homogeneous whose spectra having bounded dimension is shown to exhaust all possible Elliott invariant for C -algebras of the form A ⊗ Z_0 , where A is any finite separable simple amenable C -algebras.more » « less
-
We consider operators on L_2 spaces that expand the support of vectors in a manner controlled by some constraint function. The primary objects of study are C*-algebras that arise from suitable families of constraints, which we call support expansion C*-algebras. In the discrete setting, support expansion C*-algebras are classical uniform Roe algebras, and the continuous version featured here provides examples of “measurable" or “quantum" uniform Roe algebras as developed in a companion paper. We find that in contrast to the discrete setting, the poset of support expansion C*-algebras inside B(L_2(R)) is extremely rich, with uncountable ascending chains, descending chains, and antichains.more » « less
An official website of the United States government

