Free fermion vertex superalgebras are discussed from the point of view of Urod vertex algebras [T. Arakawa, T. Creutzig and B. Feigin, Urod algebras and translation of [Formula: see text]-algebras, Forum Mathematics Sigma, Vol. 10 (Cambridge University Press, 2022) and M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima–Yoshioka blow-up equations, preprint (2013), arXiv:1310.7281]. We present all finite decompositions of the [Formula: see text]-fermion vertex algebra via Virasoro and [Formula: see text] superconformal vertex algebras. We also present decompositions of higher rank fermion algebras using affine [Formula: see text]-algebras, and a conjecture on the existence of the “square root” of the [Formula: see text] fermion algebra. 
                        more » 
                        « less   
                    
                            
                            Compact quantum metric spaces from free graph algebras
                        
                    
    
            Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1654159
- PAR ID:
- 10472017
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- International Journal of Mathematics
- Volume:
- 33
- Issue:
- 10n11
- ISSN:
- 0129-167X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A homology class [Formula: see text] of a complex flag variety [Formula: see text] is called a line degree if the moduli space [Formula: see text] of 0-pointed stable maps to X of degree d is also a flag variety [Formula: see text]. We prove a quantum equals classical formula stating that any n-pointed (equivariant, [Formula: see text]-theoretic, genus zero) Gromov–Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety [Formula: see text]. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov–Witten invariants of the variety of complete flags [Formula: see text]. Our formulas make it straightforward to compute the big quantum [Formula: see text]-theory ring [Formula: see text] modulo the ideal [Formula: see text] generated by degrees d larger than line degrees.more » « less
- 
            Abstract. We develop persistent homology in the setting of filtrations of (Cˇech) closure spaces. Examples of filtrations of closure spaces include metric spaces, weighted graphs, weighted directed graphs, and filtrations of topological spaces. We use various products and intervals for closure spaces to obtain six homotopy theories, six cubical singular homology theories, and three simplicial singular homology theories. Applied to filtrations of closure spaces, these homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance from metric spaces to filtrations of closure spaces and use it to prove that any persistence module obtained from a homotopy-invariant functor on closure spaces is stable.more » « less
- 
            We generalize the notions of asymptotic dimension and coarse embeddings from metric spaces to quantum metric spaces in the sense of Kuperberg and Weaver [A von Neumann algebra approach to quantum metrics, Mem. Am. Math. Soc. 215(1010) (2012) 1–80]. We show that quantum asymptotic dimension behaves well with respect to metric quotients and direct sums, and is preserved under quantum coarse embeddings. Moreover, we prove that a quantum metric space that equi-coarsely contains a sequence of expanders must have infinite asymptotic dimension. This is done by proving a quantum version of a vertex-isoperimetric inequality for expanders, based upon a previously known edge-isoperimetric one from [K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf and F. Verstraete, The [Formula: see text]-divergence and mixing times of quantum Markov processes, J. Math. Phys. 51(12) (2010) 122201].more » « less
- 
            For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes under this metric, and show in particular that between any two distinct points in this space there are continuum many geodesic paths. We also study subspaces of the form [Formula: see text] where [Formula: see text] is closed under Turing equivalence, and show that there is a tight connection between topological properties of such a space and computability-theoretic properties of [Formula: see text]. We then define a distance between Turing degrees based on Hausdorff distance in the metric space [Formula: see text]. We adapt a proof of Monin to show that the Hausdorff distances between Turing degrees that occur are exactly 0, [Formula: see text], and 1, and study which of these values occur most frequently in the senses of Lebesgue measure and Baire category. We define a degree a to be attractive if the class of all degrees at distance [Formula: see text] from a has measure 1, and dispersive otherwise. In particular, we study the distribution of attractive and dispersive degrees. We also study some properties of the metric space of Turing degrees under this Hausdorff distance, in particular the question of which countable metric spaces are isometrically embeddable in it, giving a graph-theoretic sufficient condition for embeddability. Motivated by a couple of issues arising in the above work, we also study the computability-theoretic and reverse-mathematical aspects of a Ramsey-theoretic theorem due to Mycielski, which in particular implies that there is a perfect set whose elements are mutually 1-random, as well as a perfect set whose elements are mutually 1-generic. Finally, we study the completeness of [Formula: see text] from the perspectives of computability theory and reverse mathematics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    