This paper presents results of an experimental investigation of solute transport in a simplified model of the spinal canal. The work aims to provide increased understanding of the mechanisms responsible for drug dispersion in intrathecal drug delivery (ITDD) procedures. The model consists of an annular channel bounded externally by a rigid transparent tube of circular section, representing the dura mater, and internally by an eccentric cylindrical compliant insert, representing the spinal cord. The tube, closed at one end, is connected to a rigid acrylic reservoir, representing the cranial cavity. The system is filled with water, whose properties are almost identical to those of the cerebrospinal fluid. A programmable peristaltic pump is employed to generate oscillatory motion at frequencies that are representative of those induced by the cardiac and respiratory cycles. Laser induced fluorescence is used to characterize the dispersion of fluorescent dye along the canal and into the cranial cavity for different values of the relevant Womersley number and different eccentricities of the annular section. The present work corroborates experimentally, for the first time, the existence of a steady bulk flow, associated with the mean Lagrangian motion, which plays a key role in the transport of the solute along the spinal canal. The measurements of solute dispersion are found to be in excellent agreement with theoretical predictions obtained using a simplified transport equation derived earlier on the basis of a two-timescale asymptotic analysis. The experimental results underscore the importance of the eccentricity and its variations along the canal and identifies changes in the flow topology associated with differences in the Womersley number, with potential implications in guiding future designs of ITDD protocols.
more »
« less
Buoyancy-modulated Lagrangian drift in wavy-walled vertical channels as a model problem to understand drug dispersion in the spinal canal
This paper investigates flow and transport in a slender wavy-walled vertical channel subject to a prescribed oscillatory pressure difference between its ends. When the ratio of the stroke length of the pulsatile flow to the channel wavelength is small, the resulting flow velocity is known to include a slow steady-streaming component resulting from the effect of the convective acceleration. Our study considers the additional effect of gravitational forces in configurations with a non-uniform density distribution. Specific attention is given to the slowly evolving buoyancy-modulated flow emerging after the deposition of a finite amount of solute whose density is different from that of the fluid contained in the channel, a relevant problem in connection with drug dispersion in intrathecal drug delivery (ITDD) processes, involving the injection of the drug into the cerebrospinal fluid that fills the spinal canal. It is shown that when the Richardson number is of order unity, the relevant limit in ITDD applications, the resulting buoyancy-induced velocities are comparable to those of steady streaming. As a consequence, the slow time-averaged Lagrangian motion of the fluid, involving the sum of the Stokes drift and the time-averaged Eulerian velocity, is intimately coupled with the transport of the solute, resulting in a slowly evolving problem that can be treated with two-time-scale methods. The asymptotic development leads to a time-averaged, nonlinear integro-differential transport equation that describes the slow dispersion of the solute, thereby circumventing the need to describe the small concentration fluctuations associated with the fast oscillatory motion. The ideas presented here can find application in developing reduced models for future quantitative analyses of drug dispersion in the spinal canal.
more »
« less
- Award ID(s):
- 1853954
- PAR ID:
- 10429590
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 949
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper addresses the viscous flow developing about an array of equally spaced identical circular cylinders aligned with an incompressible fluid stream whose velocity oscillates periodically in time. The focus of the analysis is on harmonically oscillating flows with stroke lengths that are comparable to or smaller than the cylinder radius, such that the flow remains two-dimensional, time-periodic and symmetric with respect to the centreline. Specific consideration is given to the limit of asymptotically small stroke lengths, in which the flow is harmonic at leading order, with the first-order corrections exhibiting a steady-streaming component, which is computed here along with the accompanying Stokes drift. As in the familiar case of oscillating flow over a single cylinder, for small stroke lengths, the associated time-averaged Lagrangian velocity field, given by the sum of the steady-streaming and Stokes-drift components, displays recirculating vortices, which are quantified for different values of the two relevant controlling parameters, namely, the Womersley number and the ratio of the inter-cylinder distance to the cylinder radius. Comparisons with results of direct numerical simulations indicate that the description of the Lagrangian mean flow for infinitesimally small values of the stroke length remains reasonably accurate even when the stroke length is comparable to the cylinder radius. The numerical integrations are also used to quantify the streamwise flow rate induced by the presence of the cylinder array in cases where the periodic surrounding motion is driven by an anharmonic pressure gradient, a problem of interest in connection with the oscillating flow of cerebrospinal fluid around the nerve roots located along the spinal canal.more » « less
-
We develop a theory of fluid--structure interaction (FSI) between an oscillatory Newtonian fluid flow and a compliant conduit. We consider the canonical geometries of a 2D channel with a deformable top wall and an axisymmetric deformable tube. Focusing on the hydrodynamics, we employ a linear relationship between wall displacement and hydrodynamic pressure, which has been shown to be suitable for a leading-order-in-slenderness theory. The slenderness assumption also allows the use of lubrication theory, and the flow rate is related to the pressure gradient (and the tube/wall deformation) via the classical solutions for oscillatory flow in a channel and in a tube (attributed to Womersley). Then, by two-way coupling the oscillatory flow and the wall deformation via the continuity equation, a one-dimensional nonlinear partial differential equation (PDE) governing the instantaneous pressure distribution along the conduit is obtained, without \textit{a priori} assumptions on the magnitude of the oscillation frequency (\textit{i.e.}, at arbitrary Womersley number). We find that the cycle-averaged pressure (for harmonic pressure-controlled conditions) deviates from the expected steady pressure distribution, suggesting the presence of a streaming flow. An analytical perturbative solution for a weakly deformable conduit is obtained to rationalize how FSI induces such streaming. In the case of a compliant tube, the results obtained from the proposed reduced-order PDE and its perturbative solutions are validated against three-dimensional, two-way-coupled direct numerical simulations. We find good agreement between theory and simulations for a range of dimensionless parameters characterizing the oscillatory flow and the FSI, demonstrating the validity of the proposed theory of oscillatory flows in compliant conduits at arbitrary Womersley number.more » « less
-
Deformable microchannels emulate a key characteristic of soft biological systems and flexible engineering devices: the flow-induced deformation of the conduit due to slow viscous flow within. Elucidating the two-way coupling between oscillatory flow and deformation of a three-dimensional (3-D) rectangular channel is crucial for designing lab-on-a-chip and organ-on-a-chip microsystems and eventually understanding flow–structure instabilities that can enhance mixing and transport. To this end, we determine the axial variations of the primary flow, pressure and deformation for Newtonian fluids in the canonical geometry of a slender (long) and shallow (wide) 3-D rectangular channel with a deformable top wall under the assumption of weak compliance and without restriction on the oscillation frequency (i.e. on the Womersley number). Unlike rigid conduits, the pressure distribution is not linear with the axial coordinate. To validate this prediction, we design a polydimethylsiloxane-based experimental platform with a speaker-based flow-generation apparatus and a pressure acquisition system with multiple ports along the axial length of the channel. The experimental measurements show good agreement with the predicted pressure profiles across a wide range of the key dimensionless quantities: the Womersley number, the compliance number and the elastoviscous number. Finally, we explore how the nonlinear flow–deformation coupling leads to self-induced streaming (rectification of the oscillatory flow). Following Zhang and Rallabandi (J. Fluid Mech., vol. 996, 2024, p. A16), we develop a theory for the cycle-averaged pressure based on the primary problem’s solution, and we validate the predictions for the axial distribution of the streaming pressure against the experimental measurements.more » « less
-
Driving oscillatory flow around an obstacle generates, due to inertial rectification, a steady ‘streaming’ flow that is useful in a host of microfluidic applications. While theory has focused largely on two-dimensional flows, streaming in many practical microfluidic devices is three-dimensional due to confinement. We develop a three-dimensional streaming theory around an obstacle in a microchannel with a Hele-Shaw-like geometry, where one dimension (depth) is much shorter than the other two dimensions. Utilizing inertial lubrication theory, we demonstrate that the time-averaged streaming flow has a three-dimensional structure. Notably, the flow reverses direction across the depth of the channel, which is a feature not observed in less confined streaming set-ups. This feature is confirmed by our experiments of streaming around a cylinder sandwiched in a microchannel. Our theory also predicts that the streaming velocity decays as the inverse cube of the distance from the cylinder, faster than that expected from previous two-dimensional approaches. We verify this velocity decay quantitatively using particle tracking measurements from experiments of streaming around cylinders with different aspect ratios at different driving frequencies.more » « less
An official website of the United States government

