skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oscillatory flows in compliant conduits at arbitrary Womersley number
We develop a theory of fluid--structure interaction (FSI) between an oscillatory Newtonian fluid flow and a compliant conduit. We consider the canonical geometries of a 2D channel with a deformable top wall and an axisymmetric deformable tube. Focusing on the hydrodynamics, we employ a linear relationship between wall displacement and hydrodynamic pressure, which has been shown to be suitable for a leading-order-in-slenderness theory. The slenderness assumption also allows the use of lubrication theory, and the flow rate is related to the pressure gradient (and the tube/wall deformation) via the classical solutions for oscillatory flow in a channel and in a tube (attributed to Womersley). Then, by two-way coupling the oscillatory flow and the wall deformation via the continuity equation, a one-dimensional nonlinear partial differential equation (PDE) governing the instantaneous pressure distribution along the conduit is obtained, without \textit{a priori} assumptions on the magnitude of the oscillation frequency (\textit{i.e.}, at arbitrary Womersley number). We find that the cycle-averaged pressure (for harmonic pressure-controlled conditions) deviates from the expected steady pressure distribution, suggesting the presence of a streaming flow. An analytical perturbative solution for a weakly deformable conduit is obtained to rationalize how FSI induces such streaming. In the case of a compliant tube, the results obtained from the proposed reduced-order PDE and its perturbative solutions are validated against three-dimensional, two-way-coupled direct numerical simulations. We find good agreement between theory and simulations for a range of dimensionless parameters characterizing the oscillatory flow and the FSI, demonstrating the validity of the proposed theory of oscillatory flows in compliant conduits at arbitrary Womersley number.  more » « less
Award ID(s):
2029540
PAR ID:
10481624
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Fluids
Volume:
8
Issue:
12
ISSN:
2469-990X
Page Range / eLocation ID:
124102
Subject(s) / Keyword(s):
Flow-vessel interactions Lubrication theory Microfluidics Fluid Dynamics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deformable microchannels emulate a key characteristic of soft biological systems and flexible engineering devices: the flow-induced deformation of the conduit due to slow viscous flow within. Elucidating the two-way coupling between oscillatory flow and deformation of a three-dimensional (3-D) rectangular channel is crucial for designing lab-on-a-chip and organ-on-a-chip microsystems and eventually understanding flow–structure instabilities that can enhance mixing and transport. To this end, we determine the axial variations of the primary flow, pressure and deformation for Newtonian fluids in the canonical geometry of a slender (long) and shallow (wide) 3-D rectangular channel with a deformable top wall under the assumption of weak compliance and without restriction on the oscillation frequency (i.e. on the Womersley number). Unlike rigid conduits, the pressure distribution is not linear with the axial coordinate. To validate this prediction, we design a polydimethylsiloxane-based experimental platform with a speaker-based flow-generation apparatus and a pressure acquisition system with multiple ports along the axial length of the channel. The experimental measurements show good agreement with the predicted pressure profiles across a wide range of the key dimensionless quantities: the Womersley number, the compliance number and the elastoviscous number. Finally, we explore how the nonlinear flow–deformation coupling leads to self-induced streaming (rectification of the oscillatory flow). Following Zhang and Rallabandi (J. Fluid Mech., vol. 996, 2024, p. A16), we develop a theory for the cycle-averaged pressure based on the primary problem’s solution, and we validate the predictions for the axial distribution of the streaming pressure against the experimental measurements. 
    more » « less
  2. The interaction between deformable surfaces and oscillatory driving is known to produce complex secondary time-averaged flows due to inertial and elastic nonlinearities. Here, we revisit the problem of oscillatory flow in a cylindrical tube with a deformable wall, and analyse it under a long-wave theory for small deformations, but for arbitrary Womersley numbers. We find that the oscillatory pressure does not vary linearly along the length of a deformable channel, but instead decays exponentially with spatial oscillations. We show that this decay occurs over an elasto-visco-inertial length scale that depends on the material properties of the fluid and the elastic walls, the geometry of the system, and the frequency of the oscillatory flow, but is independent of the amplitude of deformation. Inertial and geometric nonlinearities associated with the elastic deformation of the channel drive a time-averaged secondary flow. We quantify the flow using numerical solutions of the perturbation theory, and gain insight by developing analytic approximations. The theory identifies a complex non-monotonic dependence of the time-averaged flux on the elastic compliance and inertia, including a reversal of the flow. Finally, we show that our analytic theory is in excellent quantitative agreement with the three-dimensional direct numerical simulations of Pandeet al.(Phys. Rev. Fluids, vol. 8, no. 12, 2023, 124102). 
    more » « less
  3. Experiments have shown that flow in compliant microchannels can become unstable at a much lower Reynolds number than the corresponding flow in a rigid conduit. Therefore, it has been suggested that the wall's elastic compliance can be exploited towards new modalities of microscale mixing. While previous studies mainly focused on the local instability induced by the fluid–structure interactions (FSIs) in the system, we derive a one-dimensional (1-D) model to study the FSI's effect on the global instability. The proposed 1-D FSI model is tailored to long, shallow rectangular microchannels with a deformable top wall, similar to the experiments. Going beyond the usual lubrication flows analysed in these geometries, we include finite fluid inertia and couple the reduced flow equations to a novel reduced 1-D wall deformation equation. Although a quantitative comparison with previous experiments is difficult, the behaviours of the proposed model show, qualitatively, agreement with the experimental observations, and capture several key effects. Specifically, we find the critical conditions under which the inflated base state of the 1-D FSI model is linearly unstable to infinitesimal perturbations. The critical Reynolds numbers predicted are in agreement with experimental observations. The unstable modes are highly oscillatory, with frequencies close to the natural frequency of the wall, suggesting that the observed instabilities are resonance phenomena. Furthermore, during the start-up from an undeformed initial state, self-sustained oscillations can be triggered by FSI. Our modelling framework can be applied to other microfluidic systems with similar geometric scale separation under different operating conditions. 
    more » « less
  4. Abstract A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhancement of throughput due to the change in cross‐sectional area. The latter gives rise to a non‐constant pressure gradient in the flow‐wise direction and, hence, to a nonlinear flow rate–pressure drop relation (unlike the Hagen–Poiseuille law for a rigid tube). Many biofluids are non‐Newtonian, and are well approximated by generalized Newtonian (say, power‐law) rheological models. Consequently, we analyze the problem of steady low Reynolds number flow of a generalized Newtonian fluid through a slender elastic tube by coupling fluid lubrication theory to a structural problem posed in terms of Donnell shell theory. A perturbative approach (in the slenderness parameter) yields analytical solutions for both the flow and the deformation. Using matched asymptotics, we obtain a uniformly valid solution for the tube's radial displacement, which features both a boundary layer and a corner layer caused by localized bending near the clamped ends. In doing so, we obtain a “generalized Hagen–Poiseuille law” for soft microtubes. We benchmark the mathematical predictions against three‐dimensional two‐way coupled direct numerical simulations (DNS) of flow and deformation performed using the commercial computational engineering platform by ANSYS. The simulations show good agreement and establish the range of validity of the theory. Finally, we discuss the implications of the theory on the problem of the flow‐induced deformation of a blood vessel, which is featured in some textbooks. 
    more » « less
  5. A high-order in space spectral-element methodology for the solution of a strongly coupled fluid-structure interaction (FSI) problem is developed. A methodology is based on a partitioned solution of incompressible fluid equations on body-fitted grids, and nonlinearly-elastic solid deformation equations coupled via a fixed-point iteration approach with Aitken relaxation. A comprehensive verification strategy of the developed methodology is presented, including h-, p-and temporal refinement studies. An expected order of convergence is demonstrated first separately for the corresponding fluid and solid solvers, followed by a self-convergence study on a coupled FSI problem (self-convergence refers to a convergence to a reference solution obtained with the same solver at higher resolution). To this end, a new three-dimensional fluid-structure interaction benchmark is proposed for a verification of the FSI codes, which consists of a fluid flow in a channel with one rigid and one flexible wall. It is shown that, due to a consistent problem formulation, including initial and boundary conditions, a high-order spatial convergence on a fully coupled FSI problem can be demonstrated. Finally, a developed framework is applied successfully to a Direct Numerical Simulation of a turbulent flow in a channel interacting with a compliant wall, where the fluid-structure interface is fully resolved. 
    more » « less