The origin of the phenomenon known as the Great Unconformity has been a fundamental yet unresolved problem in the geosciences for over a century. Recent hypotheses advocate either global continental exhumation averaging 3 to 5 km during Cryogenian (717 to 635 Ma) snowball Earth glaciations or, alternatively, diachronous episodic exhumation throughout the Neoproterozoic (1,000 to 540 Ma) due to plate tectonic reorganization from supercontinent assembly and breakup. To test these hypotheses, the temporal patterns of Neoproterozoic thermal histories were evaluated for four North American locations using previously published medium- to low-temperature thermochronology and geologic information. We present inverse time–temperature simulations within a Bayesian modeling framework that record a consistent signal of relatively rapid, high-magnitude cooling of ∼120 to 200 ° C interpreted as erosional exhumation of upper crustal basement during the Cryogenian. These models imply widespread, synchronous cooling consistent with at least ∼3 to 5 km of unroofing during snowball Earth glaciations, but also demonstrate that plate tectonic drivers, with the potential to cause both exhumation and burial, may have significantly influenced the thermal history in regions that were undergoing deformation concomitant with glaciation. In the cratonic interior, however, glaciation remains the only plausible mechanism that satisfies the required timing, magnitude, and broad spatial pattern of continental erosion revealed by our thermochronological inversions. To obtain a full picture of the extent and synchroneity of such erosional exhumation, studies on stable cratonic crust below the Great Unconformity must be repeated on all continents.
more »
« less
Cryogenian glacial erosion of the central Canadian Shield: The “late” Great Unconformity on thin ice
Abstract The Great Unconformity has been recognized for more than a century, but only recently have its origins become a subject of debate. Hypotheses suggest global Snowball Earth glaciations and tectonic processes associated with the supercontinent Rodinia as drivers of widespread kilometer-scale erosion in the late Neoproterozoic. We present new integrated zircon and apatite (U-Th)/He and fission-track thermochronology from Precambrian basement samples of the central Canadian Shield in northern Manitoba to test these ideas. Bayesian inverse modeling indicates that 150–200 °C of cooling (>3 km of exhumation) occurred simultaneously with Cryogenian glaciations at ca. 690–650 Ma within interior North America. This estimate for the timing of unroofing is more precise than previous appraisals and does not align with any known tectonic or magmatic events (i.e., large igneous province eruptions) potentially associated with the supercontinent cycle that occurred during the late Proterozoic along the Laurentian margins. Based on these results and interpretations, the timing and magnitude of exhumation is best explained by glacial erosion, and further establishes the importance of multiple thermochronometers for resolving detailed deeptime thermal histories.
more »
« less
- Award ID(s):
- 2044800
- PAR ID:
- 10429607
- Date Published:
- Journal Name:
- Geology
- Volume:
- 50
- Issue:
- 12
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 1336 to 1340
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High‐relief glacial valleys shape the modern topography of the Southern Patagonian Andes, but their formation remains poorly understood. Two Miocene plutonic complexes in the Andean retroarc, the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced between 16.9–16.4 Ma and 12.6–12.4 Ma, respectively. Subduction of oceanic ridge segments initiated ca. 16 Ma at 54°S, leading to northward opening of a slab window with associated mantle upwelling. The onset of major glaciations caused drastic topographic changes since ca. 7 Ma. To constrain the respective contributions of tectonic‐mantle dynamics and fluvio‐glacial erosion to rock exhumation and landscape evolution, we perform inverse thermal modeling of a new data set of zircon and apatite (U‐Th)/He from the two massifs, complemented by apatite4He/3He data for Torres del Paine. Our results show rapid rock exhumation recorded only in the Fitz Roy massif between 10 and 8 Ma, which we ascribe to local mantle upwelling forcing surface uplift and intensified erosion around 49°S. Both massifs record a pulse of rock exhumation between 7 and 4 Ma, which we interpret as enhanced erosion during the beginning of Patagonian glaciations. After a period of erosional and tectonic quiescence in the Pliocene, increased rock exhumation since 3–2 Ma is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial‐interglacial cycles. This study highlights that glacial erosion was the main driver to rock exhumation in the Patagonian retroarc since 7 Ma, but that mantle upwelling might be a driving force to rock exhumation as well.more » « less
-
Cenozoic exhumation in Marie Byrd Land (MBL), West Antarctica, has been dominated by uplift of the MBL dome, an ~800 by ~300 km topographic swell thought to be supported by a hot mantle anomaly, and West Antarctic ice sheet (WAIS) development resulting in deeply incised glacial troughs with up to 3 km of local relief. WAIS expansion is thought to potentially coincide with uplift of the MBL dome, which would have provided the elevated topography necessary to nucleate and grow a continental ice sheet beginning sometime between 34 – 20 Ma. Temporal and spatial relationships between these events remain unclear, however. This study investigates the timing, magnitude, and spatial relationships between tectonic uplift and glacial incision in MBL by leveraging thermo-kinematic modeling informed by detrital low-temperature thermochronology. We investigated Neogene detrital seafloor sediment samples from 14 dredge and core sites along the coast of MBL. Apatite He ages (closure temp ~60°C) of detrital samples range from 23.5 to >80 Ma. Most detrital ages are significantly younger than the ~80 Ma ages typical of exposed bedrock across the region, suggesting these originate from deeply incised bedrock of glacial troughs. The youngest ages obtained for samples retrieved from offshore central and eastern MBL are also significantly younger than the youngest ages obtained for samples from western MBL, suggesting spatial heterogeneity in the timing and/or magnitude of exhumation across the region. Thermo-kinematic modeling of western MBL suggests the regional exhumation rate has been low (10-3 km/myr) since 80 Ma, although focused erosion in glacial troughs produced local late Cenozoic exhumation rates as high as 0.15 km/myr. Preliminary models of the DeVicq glacial trough region of central MBL support these patterns of exhumation. Although model predictions generally agree with observed detrital age distributions, incorporation of detrital ages into these models is expected to provide new insight into the timing of WAIS inception, as well as rates and magnitudes of glacial incision across MBL.more » « less
-
Marie Byrd Land (MBL), West Antarctica, is poorly studied geologically due to its ice cover and remoteness. As a result, the timing and magnitude of tectonic and erosional events, such as the tectonic uplift of the Marie Byrd Land dome and the incision of the DeVicq Glacial Trough, are debated. When faced with problems difficult to study and solve through in-person field work, it becomes necessary to turn to modeling. Pecube is a thermo-kinematic modeling program that uses topographic and crustal thermal data to calculate thermochronologic ages across a landscape. Thermochronology uses radiometric dating of mineral systems that are sensitive to specific temperatures and can be used to track cooling related to the tectonic and exhumation history of a region. Model predictions can be compared to observed ages to test the viability of tectonic or geomorphic scenarios. Observed ages used here include dates derived from apatite fission track analysis (AFT; closure temperature ~ 110 °C) and apatite (U-Th)/He dating (AHe; closure temperature ~ 60 °C) of detrital material recovered from offshore MBL that presumably originated from the DeVicq Trough region of MBL. Ongoing modeling efforts will determine how closely calculated bedrock ages compare to new detrital AHe ages, ranging from 23.5-82.8 Ma, and AFT ages, ranging from 49.7-83.6 Ma. These ages broadly correspond to late breakup of Gondwana (~100-85Ma), erosion during and after the uplift of the Marie Byrd Land dome (~30Ma), and glacial incision (beginning at 34 or 20Ma). In light of these new data, alterations were made to existing Pecube models for the DeVicq Trough region to rule out and narrow down the timings and rates possible for both glacial incision at the DeVicq Glacial Trough and exhumation of the Marie Byrd Land dome. Preliminary results suggest that varying glacial incision start time between 34 and 20 Ma, dates proposed for the initiation of the West Antarctic Ice Sheet, does not change resulting bedrock ages significantly. However, varying background exhumation rates results in ages that are broadly consistent with observed ages. Ongoing modeling efforts seek to refine this range further to give insight on the exhumation history and tectonic processes of this region. doi: 10.1130/abs/2024AM-402995more » « less
-
Marie Byrd Land (MBL), West Antarctica, is poorly studied geologically due to its ice cover and remoteness. As a result, the timing and magnitude of tectonic and erosional events, such as the tectonic uplift of the Marie Byrd Land dome and the incision of the DeVicq Glacial Trough, are debated. When faced with problems difficult to study and solve through in-person field work, it becomes necessary to turn to modeling. Pecube is a thermo-kinematic modeling program that uses topographic and crustal thermal data to calculate thermochronologic ages across a landscape. Thermochronology uses radiometric dating of mineral systems that are sensitive to specific temperatures and can be used to track cooling related to the tectonic and exhumation history of a region. Model predictions can be compared to observed ages to test the viability of tectonic or geomorphic scenarios. Observed ages used here include dates derived from apatite fission track analysis (AFT; closure temperature ~ 110 °C) and apatite (U-Th)/He dating (AHe; closure temperature ~ 60 °C) of detrital material recovered from offshore MBL that presumably originated from the DeVicq Trough region of MBL. Ongoing modeling efforts will determine how closely calculated bedrock ages compare to new detrital AHe ages, ranging from 23.5-82.8 Ma, and AFT ages, ranging from 49.7-83.6 Ma. These ages broadly correspond to late breakup of Gondwana (~100-85Ma), erosion during and after the uplift of the Marie Byrd Land dome (~30Ma), and glacial incision (beginning at 34 or 20Ma). In light of these new data, alterations were made to existing Pecube models for the DeVicq Trough region to rule out and narrow down the timings and rates possible for both glacial incision at the DeVicq Glacial Trough and exhumation of the Marie Byrd Land dome. Preliminary results suggest that varying glacial incision start time between 34 and 20 Ma, dates proposed for the initiation of the West Antarctic Ice Sheet, does not change resulting bedrock ages significantly. However, varying background exhumation rates results in ages that are broadly consistent with observed ages. Ongoing modeling efforts seek to refine this range further to give insight on the exhumation history and tectonic processes of this region.more » « less
An official website of the United States government

