skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044800

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep-time thermochronology by the zircon (U-Th)/He (ZHe) method is an emerging field of study with promise for constraining Precambrian rock thermal and exhumation histories. The Grand Canyon provides an opportunity to further explore this method because excellent geologic constraints can be integrated with multiple thermochronometers to address important questions about the spatial variability of basement erosion below the sub-Cambrian Great Unconformity composite erosional surface. In this study, we synthesize new ZHe results (n = 26) and published (n = 77) ZHe data with new K-feldspar 40Ar/39Ar data and models (n = 4) from Precambrian basement rocks of the Grand Canyon, USA. We use HeFTy and QTQt thermal history modeling to evaluate the ability of the individual ZHe and K-feldspar 40Ar/39Ar thermochronometric data sets to resolve Precambrian thermal histories and compare those results with jointly modeled data using the QTQt software. We also compare Precambrian basement thermal histories of the eastern and western Grand Canyon, where the eastern Grand Canyon has ∼4 km of Grand Canyon Supergroup strata deposited and preserved, and the western Grand Canyon, where the Supergroup was either never deposited or not preserved. In all locations, models constrained only by ZHe data have limited resolving power for the past ∼600 m.y., compared to models that combine K-feldspar 40Ar/39Ar and ZHe data, which extends the recorded history into the Mesoproterozoic. Our model results suggest that two regional basement unroofing events occurred. A ca. 1350−1250 Ma cooling event is interpreted to record basement exhumation from depths of ∼10 km, and a second cooling episode (∼200−100 °C total) records exhumation from a depth of ∼3 km to 7 km to near-surface conditions between ca. 600 Ma and 500 Ma. Easternmost Grand Canyon models suggest that the preserved maximum ∼4 km thickness of the Grand Canyon Supergroup (with burial heating at ∼100 °C) approximates the total original Mesoproterozoic and Neoproterozoic stratal thickness. Whether these Supergroup rocks were present and then eroded in the western Grand Canyon, as suggested by regional geologic studies, or were never deposited is not constrained by thermochronological data. 
    more » « less
  2. Abstract The Great Unconformity has been recognized for more than a century, but only recently have its origins become a subject of debate. Hypotheses suggest global Snowball Earth glaciations and tectonic processes associated with the supercontinent Rodinia as drivers of widespread kilometer-scale erosion in the late Neoproterozoic. We present new integrated zircon and apatite (U-Th)/He and fission-track thermochronology from Precambrian basement samples of the central Canadian Shield in northern Manitoba to test these ideas. Bayesian inverse modeling indicates that 150–200 °C of cooling (>3 km of exhumation) occurred simultaneously with Cryogenian glaciations at ca. 690–650 Ma within interior North America. This estimate for the timing of unroofing is more precise than previous appraisals and does not align with any known tectonic or magmatic events (i.e., large igneous province eruptions) potentially associated with the supercontinent cycle that occurred during the late Proterozoic along the Laurentian margins. Based on these results and interpretations, the timing and magnitude of exhumation is best explained by glacial erosion, and further establishes the importance of multiple thermochronometers for resolving detailed deeptime thermal histories. 
    more » « less
  3. The origin of the phenomenon known as the Great Unconformity has been a fundamental yet unresolved problem in the geosciences for over a century. Recent hypotheses advocate either global continental exhumation averaging 3 to 5 km during Cryogenian (717 to 635 Ma) snowball Earth glaciations or, alternatively, diachronous episodic exhumation throughout the Neoproterozoic (1,000 to 540 Ma) due to plate tectonic reorganization from supercontinent assembly and breakup. To test these hypotheses, the temporal patterns of Neoproterozoic thermal histories were evaluated for four North American locations using previously published medium- to low-temperature thermochronology and geologic information. We present inverse time–temperature simulations within a Bayesian modeling framework that record a consistent signal of relatively rapid, high-magnitude cooling of ∼120 to 200 ° C interpreted as erosional exhumation of upper crustal basement during the Cryogenian. These models imply widespread, synchronous cooling consistent with at least ∼3 to 5 km of unroofing during snowball Earth glaciations, but also demonstrate that plate tectonic drivers, with the potential to cause both exhumation and burial, may have significantly influenced the thermal history in regions that were undergoing deformation concomitant with glaciation. In the cratonic interior, however, glaciation remains the only plausible mechanism that satisfies the required timing, magnitude, and broad spatial pattern of continental erosion revealed by our thermochronological inversions. To obtain a full picture of the extent and synchroneity of such erosional exhumation, studies on stable cratonic crust below the Great Unconformity must be repeated on all continents. 
    more » « less