BACKGROUND: Almost 95% of the venous valves are micron scale found in veins smaller than 300μm diameter. The fluid dynamics of blood flow and transport through these micro venous valves and their contribution to thrombosis is not yet well understood or characterized due to difficulty in making direct measurements in murine models. OBJECTIVE: The unique flow patterns that may arise in physiological and pathological non-actuating micro venous valves are predicted. METHODS: Computational fluid and transport simulations are used to model blood flow and oxygen gradients in a microfluidic vein. RESULTS: The model successfully recreates the typical non-Newtonian vortical flow within the valve cusps seen in preclinical experimental models and in clinic. The analysis further reveals variation in the vortex strengths due to temporal changes in blood flow. The cusp oxygen is typically low from the main lumen, and it is regulated by systemic venous flow. CONCLUSIONS: The analysis leads to a clinically-relevant hypothesis that micro venous valves may not create a hypoxic environment needed for endothelial inflammation, which is one of the main causes of thrombosis. However, incompetent micro venous valves are still locations for complex fluid dynamics of blood leading to low shear regions that may contribute to thrombosis through other pathways.
more »
« less
Microengineered Human Vein‐Chip Recreates Venous Valve Architecture and Its Contribution to Thrombosis
Abstract Deep vein thrombosis (DVT) and its consequences are lethal, but current models cannot completely dissect its determinants—endothelium, flow, and blood constituents—together called Virchow's triad. Most models for studying DVT forego assessment of venous valves that serve as the primary sites of DVT formation. Therefore, the knowledge of DVT formed at the venous cusps has remained obscure due to lack of experimental models. Here, organ‐on‐chip methodology is leveraged to create a Vein‐Chip platform integrating fully vascularized venous valves and its hemodynamic, as seen in vivo. These Vein‐Chips reveal that vascular endothelium of valve cusps adapts to the locally disturbed microenvironment by expressing a different phenotype from the regions of uniform flow. This spatial adaptation of endothelial function recreated on the in vitro Vein‐Chip platform is shown to protect the vein from thrombosis from disturbed flow in valves, but interestingly, cytokine stimulation reverses the effect and switches the valve endothelium to becoming prothrombotic. The platform eventually modulates the three factors of Virchow's triad and provides a systematic approach to investigate the determinants of fibrin and platelet dynamics of DVT. Therefore, this Vein‐Chip offers a new preclinical approach to study venous pathophysiology and show effects of antithrombotic drug treatment.
more »
« less
- Award ID(s):
- 1944322
- PAR ID:
- 10429653
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 16
- Issue:
- 49
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Project-based learning is an important tool in undergraduate engineering education, providing opportunities for students to deepen their understanding of engineering fundamentals, to enhance their capacity for problem solving and communication, and to develop specific engineering-related skills. Here, we describe the efforts of a team of undergraduate students in creating a silicone venous valve model and experimental flow control setup, and in demonstrating the basic capabilities of the overall experimental system. We describe the process of designing and building the venous valve models and test setup and lessons learned by the students through this experience. In addition to providing invaluable experience for the students involved, this project has provided a visual demonstration of the function of venous valves, and provides a platform for fundamental research on the effect of venous valve shape, size and mechanical properties on the development of disease such as deep vein thrombosis (DVT) and pulmonary embolism (PE), which are a leading cause of death in the United States, especially among hospital patients. Findings from research using this test setup can move us toward a better understanding of patient risk levels for DVT and PE, so that physicians can make informed decisions regarding preventative measures.more » « less
-
Abstract Deep vein thrombosis (DVT) is a life‐threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen‐mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast‐enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet‐bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast‐enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet–fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image‐guided, non‐invasive, interventions for DVT and other vascular diseases.more » « less
-
Objective: Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. Conclusions: These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.more » « less
-
Using a wearable electromyography (EMG) and an accelerometer sensor, classification of subject activity state (i.e., walking, sitting, standing, or ankle circles) enables detection of prolonged "negative" activity states in which the calf muscles do not facilitate blood flow return via the deep veins of the leg. By employing machine learning classification on a multi-sensor wearable device, we are able to classify human subject state between "positive" and "negative" activities, and among each activity state, with greater than 95% accuracy. Some negative activity states cannot be accurately discriminated due to their similar presentation from an accelerometer (i.e., standing vs. sitting); however, it is desirable to separate these states to better inform the risk of developing a Deep Vein Thrombosis (DVT). Augmentation with a wearable EMG sensor improves separability of these activities by 30%.more » « less
An official website of the United States government
