Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer.
more »
« less
Reaction mechanism for atmospheric pressure plasma treatment of cysteine in solution
Abstract Mechanisms for the cold atmospheric plasma (CAP) treatment of cells in solution are needed for more optimum design of plasma devices for wound healing, cancer treatment, and bacterial inactivation. However, the complexity of organic molecules on cell membranes makes understanding mechanisms that result in modifications (i.e. oxidation) of such compounds difficult. As a surrogate to these systems, a reaction mechanism for the oxidation of cysteine in CAP activated water was developed and implemented in a 0-dimensional (plug-flow) global plasma chemistry model with the capability of addressing plasma-liquid interactions. Reaction rate coefficients for organic reactions in water were estimated based on available data in the literature or by analogy to gas-phase reactions. The mechanism was validated by comparison to experimental mass-spectrometry data for COST-jets sustained in He/O2, He/H2O and He/N2/O2mixtures treating cysteine in water. Results from the model were used to determine the consequences of changing COST-jet operating parameters, such as distance from the substrate and inlet gas composition, on cysteine oxidation product formation. Results indicate that operating parameters can be adjusted to select for desired cysteine oxidation products, including nitrosylated products.
more »
« less
- PAR ID:
- 10429655
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 56
- Issue:
- 39
- ISSN:
- 0022-3727
- Page Range / eLocation ID:
- Article No. 395205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Planar laser-induced fluorescence (LIF) was employed to measure the absolute density of hydroxyl radicals (OH) in the effluent of the COST Reference Microplasma Jet for two feed gas mixtures: He/H2O and He/O2. Experiments were conducted with the effluent propagating into air and N2environments. For the He/H2O case, measurements were also performed with the effluent impinging on a solid target at varying distances from the jet nozzle. Calibration of the OH-LIF signal from the COST-Jet was achieved by comparing it to a reference signal generated by the photofragmentation of H2O2. Results demonstrated that OH densities were sustained longer when the effluent propagates in a nitrogen environment compared to air, particularly with water added to the feed gas. The broader OH distribution in N2suggests slower consumption due to the absence of oxygen, which accelerates OH depletion in air via reactions involving O2and HO2. Even when water was not added to the feed, as in the He/O2case, appreciable OH densities were observed, due to gas impurities and reactive species interactions with atmospheric humidity, forming reaction fronts that delineate the gas flow. Two-dimensional fluid dynamics simulations elucidated the influence of atmospheric gas entrainment and solid targets on the OH distribution. Experimental trends were further compared with a zero-dimensional chemistry model to explore OH production and consumption mechanisms in air and nitrogen environments.more » « less
-
Abstract In this work, we investigated atmospheric pressure plasma jet (APPJ)-assisted methane oxidation over a Ni-SiO 2 /Al 2 O 3 catalyst. We evaluated possible reaction mechanisms by analyzing the correlation of gas phase, surface and plasma-produced species. Plasma feed gas compositions, plasma powers, and catalyst temperatures were varied to expand the experimental parameters. Real-time Fourier-transform infrared spectroscopy was applied to quantify gas phase species from the reactions. The reactive incident fluxes generated by plasma were measured by molecular beam mass spectroscopy using an identical APPJ operating at the same conditions. A strong correlation of the quantified fluxes of plasma-produced atomic oxygen with that of CH 4 consumption, and CO and CO 2 formation implies that O atoms play an essential role in CH 4 oxidation for the investigated conditions. With the integration of APPJ, the apparent activation energy was lowered and a synergistic effect of 30% was observed. We also performed in-situ diffuse reflectance infrared Fourier-transform spectroscopy to analyze the catalyst surface. The surface analysis showed that surface CO abundance mirrored the surface coverage of CH n at 25 °C. This suggests that CH n adsorbed on the catalyst surface as an intermediate species that was subsequently transformed into surface CO. We observed very little surface CH n absorbance at 500 °C, while a ten-fold increase of surface CO and stronger CO 2 absorption were seen. This indicates that for a nickel catalyst at 500 °C, the dissociation of CH 4 to CH n may be the rate-determining step in the plasma-assisted CH 4 oxidation for our conditions. We also found the CO vibrational frequency changes from 2143 cm −1 for gas phase CO to 2196 cm −1 for CO on a 25 °C catalyst surface, whereas the frequency of CO on a 500 °C catalyst was 2188 cm −1 . The change in CO vibrational frequency may be related to the oxidation of the catalyst.more » « less
-
Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O 2 is ironically not of high value. In fact, the co-production of H 2 and O 2 in conventional water electrolysis may result in the formation of explosive H 2 /O 2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H 2 evolution from water and avoid the generation of H 2 /O 2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H 2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H 2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H 2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed.more » « less
-
Oxidation of Amino Acids by Peracetic Acid: Reaction Kinetics, Pathways and Theoretical CalculationsPeracetic acid (PAA) is a sanitizer with increasing use in food, medical and water treatment industries. Amino acids are important components in targeted foods for PAA treatment and ubiquitous in natural waterbodies and wastewater effluents as the primary form of dissolved organic nitrogen. To better understand the possible reactions, this work investigated the reaction kinetics and transformation pathways of selected amino acids towards PAA. Experimental results demonstrated that most amino acids showed sluggish reactivity to PAA except cysteine (CYS), methionine (MET), and histidine (HIS). CYS showed the highest reactivity with a very rapid reaction rate. Reactions of MET and HIS with PAA followed second-order kinetics with rate constants of 4.6 ± 0.2, and 1.8 ± 0.1 M−1s−1 at pH 7, respectively. The reactions were faster at pH 5 and 7 than at pH 9 due to PAA speciation. Low concentrations of H2O2 coexistent with PAA contributed little to the oxidation of amino acids. The primary oxidation products of amino acids with PAA were [O] addition compounds on the reactive sites at thiol, thioether and imidazole groups. Theoretical calculations were applied to predict the reactivity and regioselectivity of PAA electrophilic attacks on amino acids and improved mechanistic understanding. As an oxidative disinfectant, the reaction of PAA with organics to form byproducts is inevitable; however, this study shows that PAA exhibits lower and more selective reactivity towards biomolecules such as amino acids than other common disinfectants, causing less concern of toxic disinfection byproducts. This attribute may allow greater stability and more targeted actions of PAA in various applications.more » « less
An official website of the United States government
