skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stress testing ΛCDM with high-redshift galaxy candidates
Abstract Early data from the James Webb Space Telescope (JWST) have revealed a bevy of high-redshift galaxy candidates with unexpectedly high stellar masses. An immediate concern is the consistency of these candidates with galaxy formation in the standard Λ CDM cosmological model, wherein the stellar mass ( M ⋆ ) of a galaxy is limited by the available baryonic reservoir of its host dark matter halo. The mass function of dark matter haloes therefore imposes an absolute upper limit on the number density n (> M ⋆ ,  z ) and stellar mass density ρ ⋆ (> M ⋆ ,  z ) of galaxies more massive than M ⋆ at any epoch z . Here I show that the most massive galaxy candidates in JWST observations at z  ≈ 7–10 lie at the very edge of these limits, indicating an important unresolved issue with the properties of galaxies derived from the observations, how galaxies form at early times in Λ CDM or within this standard cosmology itself.  more » « less
Award ID(s):
2108962 1910346 1752913
PAR ID:
10429698
Author(s) / Creator(s):
Date Published:
Journal Name:
Nature Astronomy
Volume:
7
Issue:
6
ISSN:
2397-3366
Page Range / eLocation ID:
731 to 735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In the local Universe, star formation is typically inefficient both globally and when considered as the fraction of gas converted into stars per local free-fall time. An important exception to this inefficiency is regions of high gravitational accelerations g, or equivalently surface densities $$\Sigma = g/(\pi \, G)$$, where stellar feedback is insufficient to overcome the self-gravity of dense gas clouds. In this paper, I explore whether dark matter can play an analogous role in providing the requisite accelerations on the scale of entire galaxies in the early cosmos. The key insight is that characteristic accelerations in dark matter haloes scale as $(1+z)^2$ at fixed halo mass. I show this is sufficient to make dark matter the source of intense accelerations that might induce efficient star formation on galactic scales at cosmic dawn in sufficiently massive haloes. The mass characterizing this regime scales as $$(1+z)^{-6}$$ and corresponds to a relatively constant comoving number density of $$n(>\!M_{\rm {vir}}) \approx 10^{-4}\, {\rm Mpc}^{-3}$$ at $$z \gtrsim 8$$. For somewhat rarer haloes, this model predicts stellar masses of $$M_{\star }\sim 10^{9}\, {\rm M}_{\odot }$$ can form in regions that end up with sizes $$\mathcal {O}(100\, {\rm pc})$$ over $$40\, {\rm Myr}$$ time-scales at $$z\approx 12-14$$; these numbers compare well to measurements for some of the brightest galaxies at that epoch from JWST observations. Dark matter and standard cosmological evolution may therefore be crucial for explaining the surprisingly high levels of star formation in the early Universe revealed by JWST. 
    more » « less
  2. Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M, implying an effective stellar baryon fraction ofϵ∼ 0.2−0.5, whereϵ≡M/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM∼ 1010Mgalaxies relative toM∼ 109M—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm. 
    more » « less
  3. ABSTRACT JWST has revealed a large population of UV-bright galaxies at $$z\gtrsim 10$$ and possibly overly massive galaxies at $$z\gtrsim 7$$, challenging standard galaxy formation models in the ΛCDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at $$4\lesssim z \lesssim 10$$ in both ΛCDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at $$z\simeq 12$$ based on spectroscopically confirmed galaxies (eight galaxies at $$z\simeq 11\!-\!13.5$$) exhibit no tension with the benchmark model. Photometric constraints at $$12 \lesssim z\lesssim 16$$ can be fully explained within EDE via either moderately increased star-formation efficiencies ($$\epsilon _{\ast}\sim 3\!-\!10\ \hbox{per cent}$$ at $$M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$$) or enhanced UV variabilities ($$\sigma _{\rm UV}\sim 0.8\!-\!1.3$$ mag at $$M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$$) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in $$\Lambda$$CDM, especially at $$z\gtrsim 14$$, where the required $$\sigma _{\rm UV}$$ exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics. 
    more » « less
  4. ABSTRACT Early photometric results from JWST have revealed a number of galaxy candidates above redshift 10. The initial estimates of inferred stellar masses and the associated cosmic star formation rates are above most theoretical model predictions up to a factor of 20 in the most extreme cases, while this has been moderated after the recalibration of NIRCam and subsequent spectroscopic detections. Using these recent JWST observations, we use galaxy scaling relations from cosmological simulations to model the star formation history to very high redshifts, back to a starting halo mass of 107 M⊙, to infer the intrinsic properties of the JWST galaxies. Here, we explore the contribution of supermassive black holes, stellar binaries, and an excess of massive stars to the overall luminosity of high-redshift galaxies. Despite the addition of alternative components to the spectral energy distribution, we find stellar masses equal to or slightly higher than previous stellar mass estimates. Most galaxy spectra are dominated by the stellar component, and the exact choice for the stellar population model does not appear to make a major difference. We find that four of the 12 high-redshift galaxy candidates are best fit with a non-negligible active galactic nuclei component, but the evidence from the continuum alone is insufficient to confirm their existence. Upcoming spectroscopic observations of z > 10 galaxies will confirm the presence and nature of high-energy sources in the early Universe and will constrain their exact redshifts. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $$\sim 10^{12}\, \text{M}_\odot$$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 $${\rm cm^2 \, g^{-1}}$$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities than the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts. 
    more » « less