skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The Hubble Space Telescope Survey of M31 Satellite Galaxies. I. RR Lyrae–based Distances and Refined 3D Geometric Structure
Abstract We measure homogeneous distances to M31 and 38 associated stellar systems (−16.8 ≤ M V ≤ −6.0), using time-series observations of RR Lyrae stars taken as part of the Hubble Space Telescope Treasury Survey of M31 Satellites. From >700 orbits of new/archival Advanced Camera for Surveys imaging, we identify >4700 RR Lyrae stars and determine their periods and mean magnitudes to a typical precision of 0.01 day and 0.04 mag. Based on period–Wesenheit–metallicity relationships consistent with the Gaia eDR3 distance scale, we uniformly measure heliocentric and M31-centric distances to a typical precision of ∼20 kpc (3%) and ∼10 kpc (8%), respectively. We revise the 3D structure of the M31 galactic ecosystem and: (i) confirm a highly anisotropic spatial distribution such that ∼80% of M31's satellites reside on the near side of M31; this feature is not easily explained by observational effects; (ii) affirm the thin (rms 7–23 kpc) planar “arc” of satellites that comprises roughly half (15) of the galaxies within 300 kpc from M31; (iii) reassess the physical proximity of notable associations such as the NGC 147/185 pair and M33/AND xxii ; and (iv) illustrate challenges in tip-of-the-red-giant branch distances for galaxies with M V > − 9.5, which can be biased by up to 35%. We emphasize the importance of RR Lyrae for accurate distances to faint galaxies that should be discovered by upcoming facilities (e.g., Rubin Observatory). We provide updated luminosities and sizes for our sample. Our distances will serve as the basis for future investigation of the star formation and orbital histories of the entire known M31 satellite system.  more » « less
Award ID(s):
2108962 1910346 1752913 2233781
NSF-PAR ID:
10429702
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
938
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    RR Lyrae stars are standard candles with characteristic photometric variability and serve as powerful tracers of Galactic structure, substructure, accretion history, and dark matter content. Here we report the discovery of distant RR Lyrae stars, including some of the most distant stars known in the Milky Way halo, with Galactocentric distances of ∼300 kpc. We use time-seriesu*gizCanada–France–Hawaii Telescope/MegaCam photometry from the Next Generation Virgo Cluster Survey (NGVS). We use a template light-curve fitting method based on empirical Sloan Digital Sky Survey Stripe 82 RR Lyrae data to identify RR Lyrae candidates in the NGVS data set. We eliminate several hundred suspected quasars and identify 180 RR Lyrae candidates with heliocentric distances of ∼20–300 kpc. The halo stellar density distribution is consistent with anr−4.09±0.10power-law radial profile over most of this distance range with no signs of a break. The distribution of ab-type RR Lyrae in a period–amplitude plot (Bailey diagram) suggests that the mean metallicity of the halo decreases outward. Compared to other recent RR Lyrae surveys, like Pan-STARRS1, the High Cadence Transient Survey, and the Dark Energy Survey, our NGVS study has better single-epoch photometric precision and a comparable number of epochs but smaller sky coverage. At large distances, our RR Lyrae sample appears to be relatively pure and complete, with well-measured periods and amplitudes. These newly discovered distant RR Lyrae stars are important additions to the few secure stellar tracers beyond 150 kpc in the Milky Way halo.

     
    more » « less
  2. ABSTRACT

    We report the spectroscopic analysis of 20 halo ab-type RR Lyrae stars with heliocentric distances between 15 and 165 kpc, conducted using medium-resolution spectra from the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We obtain the systemic line-of-sight velocities of our targets with typical uncertainties of 5–10 km s−1 and compute orbital parameters for a subsample out to 50 kpc from the Galactic centre, including proper motion data from Gaia DR3. The orientation of our stars’ orbits, determined for an isolated Milky Way and for a model perturbed by the Large Magellanic Cloud, appears to suggest an accreted origin for at least half of the sample. In addition, we derive atmospheric parameters and chemical abundance ratios for seven stars beyond 20 kpc. The derived α-abundances of five of these stars follow a Milky Way halo-like trend, while the other two display an underabundance of α-elements for their [Fe/H], indicating an association with accretion events. Furthermore, based on the [Sr/Ba] ratio, we can speculate about the conditions for the formation of a potential chemically peculiar carbon-enhanced metal-poor (CEMP) RR Lyrae star. By analysing the stars’ orbital parameters and abundance ratios, we find hints of association of two of our stars with two massive satellites, namely the Large Magellanic Cloud and Sagittarius. Overall, our results are in line with the suggestion that the accretion of sub-haloes largely contributes to the outer halo stellar populations.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Accurate metallicities of RR Lyrae are extremely important in constraining period–luminosity–metallicity (PLZ) relationships, particularly in the near-infrared. We analyse 69 high-resolution spectra of Galactic RR Lyrae stars from the Southern African Large Telescope. We measure metallicities of 58 of these RR Lyrae stars with typical uncertainties of 0.15 dex. All but one RR Lyrae in this sample has accurate ($\sigma _{\varpi }\lesssim 10{{\ \rm per\ cent}}$) parallax from Gaia. Combining these new high-resolution spectroscopic abundances with similar determinations from the literature for 93 stars, we present new PLZ relationships in WISE W1 and W2 magnitudes, and the Wesenheit magnitudes W(W1, V − W1) and W(W2, V − W2). 
    more » « less
  4. ABSTRACT

    While many tensions between Local Group (LG) satellite galaxies and Λ cold dark matter cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with $M_*\gt 10^5$ M⊙ around eight isolated Milky Way (MW) mass host galaxies and four hosts in LG-like pairs. We demonstrate that these simulations resolve the survival and physical destruction of satellites with $M_*\gtrsim 10^5$ M⊙. The simulations broadly agree with LG observations, spanning the radial profiles around the MW and M31. This agreement does not depend strongly on satellite mass, even at distances ≲100 kpc. Host-to-host variation dominates the scatter in satellite counts within 300 kpc of the hosts, while time variation dominates scatter within 50 kpc. More massive host galaxies within our sample have fewer satellites at small distances, likely because of enhanced tidal destruction of satellites via the baryonic discs of host galaxies. Furthermore, we quantify and provide fits to the tidal depletion of subhaloes in baryonic relative to dark matter-only simulations as a function of distance. Our simulated profiles imply observational incompleteness in the LG even at $M_*\gtrsim 10^5$ M⊙: we predict 2–10 such satellites to be discovered around the MW and possibly 6–9 around M31. To provide cosmological context, we compare our results with the radial profiles of satellites around MW analogues in the SAGA survey, finding that our simulations are broadly consistent with most SAGA systems.

     
    more » « less
  5. Abstract

    Patchick 99 is a candidate globular cluster located in the direction of the Galactic bulge, with a proper motion almost identical to the field and extreme field star contamination. A recent analysis suggests it is a low-luminosity globular cluster with a population of RR Lyrae stars. We present new spectra of stars in and around Patchick 99, targeting specifically the three RR Lyrae stars associated with the cluster as well as the other RR Lyrae stars in the field. A sample of 53 giant stars selected from proper motions and a position on the color–magnitude diagram are also observed. The three RR Lyrae stars associated with the cluster have similar radial velocities and distances, and two of the targeted giants also have radial velocities in this velocity regime and [Fe/H] metallicities that are slightly more metal-poor than the field. Therefore, if Patchick 99 is a bona fide globular cluster, it would have a radial velocity of −92 ± 10 km s−1, a distance of 6.7 ± 0.4 kpc (as determined from the RR Lyrae stars), and an orbit that confines it to the inner bulge.

     
    more » « less