Computational fluid dynamics models often employ the free shear boundary condition at free surfaces, a result from the continuity of the stress and the large viscosity contrast at liquid–gas interfaces. This study leverages nonequilibrium molecular dynamics simulations to investigate the validity of the free shear boundary condition on the exposed surface of a liquid meniscus at the nanoscale. The primary objective is elucidating the fundamental mechanisms and behavior of fluid interactions within a capillary meniscus formed between two carbon nanotubes (CNTs) in shear-driven flow. Shear-driven flow simulations were conducted by varying the velocity of a solid slab to induce different shear rates in the adjacent water molecules. The results demonstrate, for the first time, negligible shear at the free surface, supporting the free shear assumption from the nanoscale point of view. A force balance analysis reveals that capillary and surface tension forces dominate within the meniscus, dictating its shape and stability. Meniscus deformation was observed and primarily attributed to interatomic interactions between water molecules and CNTs, driven by a combination of short-range repulsive forces and van der Waals attractions. The minimal contribution from shear forces suggests that interatomic forces, rather than applied shear stress, are the primary drivers of the meniscus deformation. These findings offer valuable insights into fluid behavior and a sound fundamental analysis of the free shear boundary condition at the nanoscale.
more »
« less
Marangoni-induced reversal of meniscus-climbing microdroplets
Small water droplets or particles located at an oil meniscus typically climb the meniscus due to unbalanced capillary forces. Here, we introduce a size-dependent reversal of this meniscus-climbing behavior, where upon cooling of the underlying substrate, droplets of different sizes concurrently ascend and descend the meniscus. We show that microscopic Marangoni convection cells within the oil meniscus are responsible for this phenomenon. While dynamics of relatively larger water microdroplets are still dominated by unbalanced capillary forces and hence ascend the meniscus, smaller droplets are carried by the surface flow and consequently descend the meniscus. We further demonstrate that the magnitude and direction of the convection cells depend on the meniscus geometry and the substrate temperature and introduce a modified Marangoni number that well predicts their strength. Our findings provide a new approach to manipulating droplets on a liquid meniscus that could have applications in material self-assembly, biological sensing and testing, or phase change heat transfer.
more »
« less
- Award ID(s):
- 1856722
- PAR ID:
- 10429812
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 625 to 633
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Capillary flow of liquids plays a key role in many applications including lab-on-a-chip devices, heat pipes and printed electronics manufacturing. Open rectangular microchannels often appear in these applications, with the lack of a top resulting in a complex free-surface morphology and evaporation. In this work we develop a theoretical model based on lubrication theory and kinetically limited evaporation to examine capillary flow of evaporating liquid solutions in open rectangular microchannels connected to circular reservoirs. The model accounts for the complex free-surface morphology, solvent evaporation, Marangoni flows due to gradients in solute concentration and temperature and finite-size reservoir effects. Significant differences are predicted in flow behaviour between pure liquids and liquid solutions due to solvent evaporation and solute transport. Marangoni flows are found to promote more uniform solute deposition patterns after solvent evaporation. Model predictions of meniscus position evolution are in good agreement with prior capillary-flow experiments of aqueous poly(vinyl alcohol) solutions in the presence of evaporation. The model reveals that the principal mechanism through which evaporation influences the meniscus position in the experiments is the increase in viscosity with solute concentration.more » « less
-
Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules ( i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle–substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth.more » « less
-
Abstract Frosting occurs due to the freezing of condensed water droplets on a supercooled surface. The nucleated frost propagates through interdroplet bridges and covers the entire surface, resulting from the deposition of highly supersaturated vapor surrounding tiny droplets. While inhibition of the formation of frost bridges is not possible, the propagation of frost can be delayed by effectively removing tiny droplets. Passive technologies, such as superhydrophobic surfaces (SHS) and hydrophobic slippery liquid‐infused porous surfaces (SLIPS), rely on static growth and direct contact with densely distributed droplets. However, use of these approaches in delaying frost propagation involves challenges, as the interdroplet distance remains small. Here, we report a new approach of spontaneous droplet movement on hydrophilic SLIPS to delay the formation of interdroplet frost bridges. Surface tension forces generated by the hydrophilic oil meniscus of a large water droplet efficiently pull neighboring droplets with a diameter of less than 20 μm from all directions. This causes a dynamic separation between water droplets and an adjacent frozen droplet. Such a process delays the formation and propagation of interdroplet frost bridges. Consequently, there is significant delay in frosting on hydrophilic SLIPS compared to those on SHS and hydrophobic SLIPS.more » « less
-
null (Ed.)We examine the axisymmetric and non-axisymmetric flows of thin fluid films over a spherical glass dome. A thin film is formed by raising a submerged dome through a silicone oil mixture composed of a volatile, low surface tension species (1 cSt, solvent) and a non-volatile species at a higher surface tension (5 cSt, initial solute volume fraction $$\phi _0$$ ). Evaporation of the 1 cSt silicone oil establishes a concentration gradient and, thus, a surface tension gradient that drives a Marangoni flow that leads to the formation of an initially axisymmetric mound. Experimentally, when $$\phi _0 \leqslant 0.3\,\%$$ , the mound grows axisymmetrically for long times (Rodríguez-Hakim et al. , Phys. Rev. Fluids , vol. 4, 2019, pp. 1–22), whereas when $$\phi _0 \geqslant 0.35\,\%$$ , the mound discharges in a preferred direction, thereby breaking symmetry. Using lubrication theory and numerical solutions, we demonstrate that, under the right conditions, external disturbances can cause an imbalance between the Marangoni flow and the capillary flow, leading to symmetry breaking. In both experiments and simulations, we observe that (i) the apparent, most amplified disturbance has an azimuthal wavenumber of unity, and (ii) an enhanced Marangoni driving force (larger $$\phi _0$$ ) leads to an earlier onset of the instability. The linear stability analysis shows that capillarity and diffusion stabilize the system, while Marangoni driving forces contribute to the growth in the disturbances.more » « less
An official website of the United States government

