Light energy provides an attractive fuel source for energy dissipating systems because of the lack of waste production, wavelength tunability and the potential for spatial and temporal resolution. In this work, we describe a peptide–spiropyran conjugate that assembled into a transient nanofiber hydrogel in the presence of visible light, and dissociated when the light source was removed. 
                        more » 
                        « less   
                    
                            
                            Dissipative self-assembly of a proline catalyst for temporal regulation of the aldol reaction
                        
                    
    
            The spatiotemporal regulation of chemical reactivity in biological systems permits a network of metabolic reactions to take place within the same cellular environment. The exquisite control of reactivity is often mediated by out-of-equilibrium structures that remain functional only as long as fuel is present to maintain the higher energy, active state. An important goal in supramolecular chemistry aims to develop functional, energy dissipating systems that approach the sophistication of biological machinery. The challenge is to create strategies that couple the energy consumption needed to promote a molecule to a higher energy, assembled state to a functional property such as catalytic activity. In this work, we demonstrated that the assembly of a spiropyran (SP) dipeptide (1) transiently promoted the proline-catalyzed aldol reaction in water when visible light was present as fuel. The transient catalytic activity emerged from 1 under light illumination due to the photoisomerization of the monomeric, O -protonated (1-MCH + ) merocyanine form to the spiropyran (1-SP) state, which rapidly assembled into nanosheets capable of catalyzing the aldol reaction in water. When the light source was removed, thermal isomerization to the more stable MCH + form caused the nanosheets to dissociate into a catalytically inactive, monomeric state. Under these conditions, the aldol reaction could be repeatedly activated and deactivated by switching the light source on and off. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2106924
- PAR ID:
- 10429855
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 14
- Issue:
- 39
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 14711 to 14716
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The urea oxidation reaction (UOR) is a possible solution to solve the world’s energy crisis. Fuel cells have been used in the UOR to generate hydrogen with a lower potential compared to water splitting, decreasing the costs of energy production. Urea is abundantly present in agricultural waste and in industrial and human wastewater. Besides generating hydrogen, this reaction provides a pathway to eliminate urea, which is a hazard in the environment and to people’s health. In this study, nanosheets of CuCo2O4 grown on nickel foam were synthesized as an electrocatalyst for urea oxidation to generate hydrogen as a green fuel. The synthesized electrocatalyst was characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electroactivity of CuCo2O4 towards the oxidation of urea in alkaline solution was evaluated using electrochemical measurements. Nanosheets of CuCo2O4 grown on nickel foam required the potential of 1.36 V in 1 M KOH with 0.33 M urea to deliver a current density of 10 mA/cm2. The CuCo2O4 electrode was electrochemically stable for over 15 h of continuous measurements. The high catalytic activities for the hydrogen evolution reaction make the CuCo2O4 electrode a bifunctional catalyst and a promising electroactive material for hydrogen production. The two-electrode electrolyzer demanded a potential of 1.45 V, which was 260 mV less than that for the urea-free counterpart. Our study suggests that the CuCo2O4 electrode can be a promising material as an efficient UOR catalyst for fuel cells to generate hydrogen at a low cost.more » « less
- 
            The design of organic–peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca2+-binding organic–peptide hybrid. The designed molecule, designated Ca2+-binding switch (CaBS), combines an EF-hand motif from classical Ca2+-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light. The MC/SP group acts both as a photoswitch as well as an optical sensor of Ca2+binding. Photoconversion of the SP to the corresponding MC unmasks an acidic phenol, which CaBS uses as an integral part of both its Ca2+-binding site as well as its tertiary and quaternary structure. By design, the SP state of CaBS is monomeric, while the Ca2+-bound form of the MC state is an obligate dimer, with two Ca2+-binding sites formed at the interface of a domain-swapped dimer. Thus, light and Ca2+were expected to serve as an “AND gate” that powers a change in backbone structure/dynamics, oligomerization state, and fluorescence properties of the designed molecule. CaBS was designed using Rosetta and molecular dynamics simulations, and experimentally characterized by nuclear magnetic resonance, isothermal titration calorimetry, and optical titrations. These data illustrate the potential of combining small molecule engineering with de novo protein design to develop sensors whose conformation, association state, and optical properties respond to multiple environmental cues.more » « less
- 
            The spiropyran mechanophore (SP) is employed as a reporter of molecular tension in a wide range of polymer matrices, but the influence of surrounding environment on the force-coupled kinetics of its ring opening has not been quantified. Here, we report single-molecule force spectroscopy studies of SP ring opening in five solvents that span normalized Reichardt solvent polarity factors (ETN) of 0.1–0.59. Individual multimechanophore polymers were activated under increasing tension at constant 300 nm s–1 displacement in an atomic force microscope. The extension results in a plateau in the force–extension curve, whose midpoint occurs at a transition force f* that corresponds to the force required to increase the rate constant of SP activation to approximately 30 s–1. More polar solvents lead to mechanochemical reactions that are easier to trigger; f* decreases across the series of solvents, from a high of 415 ± 13 pN in toluene to a low of 234 ± 9 pN in n-butanol. The trend in mechanochemical reactivity is consistent with the developing zwitterionic character on going from SP to the ring-opened merocyanine product. The force dependence of the rate constant (Δx‡) was calculated for all solvent cases and found to increase with ETN, which is interpreted to reflect a shift in the transition state to a later and more productlike position. The inferred shift in the transition state position is consistent with a double-well (two-step) reaction potential energy surface, in which the second step is rate determining, and the intermediate is more polar than the product.more » « less
- 
            Production of clean hydrogen energy from water splitting is vital for the future fuel industry, and nanocomposites have emerged as effective catalysts for the hydrogen evolution reaction (HER). In this study, Ru-CoO@SNG nanocomposites are prepared by controlled pyrolysis where Ru-CoO heterostructured nanoparticles are supported on nitrogen and sulfur codoped graphene oxide nanosheets. With a large surface area, the obtained composites exhibit a remarkable electrocatalytic activity toward HER in 1.0 M KOH with an overpotential of only −90 mV to reach the current density of 10 mA cm−2 , in comparison to −60 mV for commercial Pt/C benchmark, along with high stability. Mechanistically, codoping of sulfur and nitrogen facilitates the dispersion of the nanoparticles, and the formation of Ru-CoO heterostructures increases the active site density, reduces the electron-transfer kinetics and boosts the catalytic performance. Results from this study highlight the unique potential of structural engineering in enhancing the electrocatalytic performance of heterostructured nanocomposites.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    