Abstract We calculate cross sections for fine-structure transitions of Ne+, Ar+, Ne2+, and Ar2+in collisions with atomic hydrogen by using quantum-mechanical methods. Relaxation rate coefficients are calculated for temperatures up to 10,000 K. The temperature-dependent critical densities for the relaxation of Ne+, Ar+, Ne2+, and Ar2+in collisions with H have been determined and compared to the critical densities for collisions with electrons. The present calculations will be useful for studies utilizing the infrared lines [Neii] 12.8, [Neiii] 15.6, [Neiii] 36.0, [Arii] 6.99, [Ariii] 8.99, and [Ariii] 21.8μm as diagnostics of, for example, planetary nebulae and star formation.
more »
« less
Fine-structure transitions of Si and S induced by collisions with atomic hydrogen
ABSTRACT Using a quantum-mechanical close-coupling method, we calculate cross-sections for fine-structure excitation and relaxation of Si and S atoms in collisions with atomic hydrogen. Rate coefficients are calculated over a range of temperatures for astrophysical applications. We determine the temperature-dependent critical densities for the relaxation of Si and S in collisions with H and compare these to the critical densities for collisions with electrons. The present calculations should be useful in modelling environments exhibiting the [S i] 25 μm and [S i] 57 μm far-infrared emission lines or where cooling of S and Si by collisions with H is of interest.
more »
« less
- Award ID(s):
- 2116679
- PAR ID:
- 10429901
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 522
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1265 to 1269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Fine-structure transitions can be involved in various processes including photon absorption, charge transfer, and inelastic collisions between ions, electrons, and neutral atoms. We present fine-structure excitation and relaxation cross-sections for the collisions of the first few members of the carbon isoelectronic sequence (C, N+ and O2 +) with atomic hydrogen calculated using quantum-mechanical methods. For C, the scattering theory and computational approach is verified by comparison with previous calculations. The rate coefficients for the collisional processes are obtained. For N+ and O2 +, the transitions correspond to the lines [O iii] 52 μm, [O iii] 88 μm, [N ii] 122 μm, and [N ii] 205 μm, observed in the far-infrared in the local universe and more recently in high-redshift galaxies using radio interferometry. The influence of different potentials on the cross-sections and rate coefficients are demonstrated.more » « less
-
Abstract We analyze the cool gas in and around 14 nearby galaxies (atz< 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi, Ni, Oi, and Ari), low-ionization (Siii, Sii, Cii, Nii, and Feii), and high-ionization (Siiii, Feiii, Nv, and Ovi) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudyphotoionization models. The Hicolumn density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr≳Re. Galaxies with higher stellar mass have weaker Hiabsorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10Re. Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hicolumn density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM.more » « less
-
We report on the growth of Si-doped homoepitaxial β-Ga2O3 thin films on (010) Ga2O3 substrates via metal-organic chemical vapor deposition (MOCVD) utilizing triethylgallium (TEGa) and trimethylgallium (TMGa) precursors. The epitaxial growth achieved an impressive 9.5 μm thickness at 3 μm/h using TMGa, a significant advance in material growth for electronic device fabrication. This paper systematically studies the Schottky barrier diodes fabricated on the three MOCVD-grown films, each exhibiting variations in the epilayer thickness, doping levels, and growth rates. The diode from the 2 μm thick Ga2O3 epilayer with TEGa precursor demonstrates promising forward current densities, the lowest specific on-resistance, and the lowest ideality factor, endorsing TEGa’s potential for MOCVD growth. Conversely, the diode from the 9.5 μm thick Ga2O3 layer with TMGa precursor exhibits excellent characteristics in terms of lowest leakage current, highest on-off ratio, and highest reverse breakdown voltage of −510 V without any electric field management, emphasizing TMGa’s suitability for achieving high growth rates in Ga2O3 epilayers for vertical power electronic devices.more » « less
-
Abstract Two-particle correlations with $$\textrm{K}^{0}_\mathrm{{S}}$$ K S 0 , $$\Lambda $$ Λ / $$\overline{\Lambda }$$ Λ ¯ , and charged hadrons as trigger particles in the transverse momentum range $$8{<}p_{{\textrm{T}},{\textrm{trig}}}{<}16$$ 8 < p T , trig < 16 GeV/ $$c$$ c , and associated charged particles within $$1{<}p_{{\textrm{T}},{\textrm{assoc}}}{<}8$$ 1 < p T , assoc < 8 GeV/ $$c$$ c , are studied at midrapidity in pp and central Pb–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02 TeV with the ALICE detector at the LHC. After subtracting the contributions of the flow background, the per-trigger yields are extracted on both the near and away sides, and the ratio in Pb–Pb collisions with respect to pp collisions ( $$I_{\textrm{AA}}$$ I AA ) is computed. The per-trigger yield in Pb–Pb collisions on the away side is strongly suppressed to the level of $$I_{\textrm{AA}}$$ I AA $$\approx 0.6$$ ≈ 0.6 for $$p_{{\textrm{T}},{\textrm{assoc}}}>3$$ p T , assoc > 3 GeV/ $$c$$ c as expected from strong in-medium energy loss, while an enhancement develops at low $$p_{{\textrm{T}},{\textrm{assoc}}}$$ p T , assoc on both the near and away sides, reaching $$I_{\textrm{AA}}$$ I AA $$\approx 1.8$$ ≈ 1.8 and 2.7 respectively. These findings are in good agreement with previous ALICE measurements from two-particle correlations triggered by neutral pions ( $$\pi ^{0}$$ π 0 –h) and charged hadrons (h–h) in Pb–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~2.76$$ s NN = 2.76 TeV. Moreover, the correlations with $$\textrm{K}^{0}_\mathrm{{S}}$$ K S 0 mesons and $$\Lambda $$ Λ / $$\overline{\Lambda }$$ Λ ¯ baryons as trigger particles are compared to those of inclusive charged hadrons. The results are compared with the predictions of Monte Carlo models.more » « less
An official website of the United States government

