Large deployable mesh reflectors play a critical role in satellite communications, Earth observation, and deep-space exploration, offering high-gain antenna performance through precisely shaped reflective surfaces. Traditional dynamic modeling approaches—such as wave-based and finite element methods—often struggle to accurately capture the complex behavior of three-dimensional reflectors due to oversimplifications of cable members. To address these challenges, this paper proposes a novel spatial discretization framework that systematically decomposes cable member displacements into boundary-induced and internal components in a global Cartesian coordinate system. The framework derives a system of ordinary differential equations for each cable member by enforcing the Lagrange’s equations, capturing both longitudinal and transverse internal displacement of the cable member. Numerical simulations of a two-dimensional cable-network structure and a center-feed parabolic deployable mesh reflector with 101 nodes illustrate the improved accuracy of the proposed method in predicting vibration characteristics across a broad frequency range. Compared to standard finite element analysis, the proposed method more effectively identifies both low- and high-frequency modes and offers robust convergence and accurate prediction for both frequency and transient responses of the structure. This enhanced predictive capability underscores the significance of incorporating internal cable member displacements for reliable dynamic modeling of large deployable mesh reflectors, ultimately informing better design, control, and on-orbit performance of future space-based reflector systems.
more »
« less
A New Approach to Nonlinear Dynamic Modeling and Vibration Analysis of Tensegrity Structures
Tensegrity structures have experienced continued research and development interests in the past several decades. Revealing dynamic characteristics of a tensegrity structure, for example: vibration analysis, is an important objective in structural design and analysis. Traditional dynamic modeling methods are inaccurate in predicting dynamic responding of a tensegrity structure, due to their neglection of internal displacements of structure members. To solve this issue, a new nonlinear dynamic modeling method for tensegrity structures is proposed in this paper. This method defines position of a structure member as a summation of boundary-induced terms and internal terms in a global coordinate system. A nonlinear dynamic model of a tensegrity structure is derived from Lagrange equation, as a system of ordinary differential equations. This dynamic model can be linearized at an equilibrium configuration for vibration analysis. As shown in simulation results, the proposed method can predict natural frequencies of a tensegrity structure with a better accuracy than the traditional methods. Unlike the traditional methods that can only predict dynamic responses in a low frequency domain, the proposed method can also reveal dynamic responses of a tensegrity structure in a higher frequency domain by only using a small number of internal terms.
more »
« less
- PAR ID:
- 10429977
- Date Published:
- Journal Name:
- ASME 2022 International Mechanical Engineering Congress and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tensegrity structures have emerged as important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on dynamic analyses of tensegrity structures mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study aims to propose a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer (SLDV) is used with a mirror for extending its field of view to measure full-field vibration of a three-strut tensegrity column with free boundaries. Tensions and axial stiffnesses of cable members of the tensegrity column are determined using natural frequencies of their transverse and longitudinal modes, respectively, and used to build a numerical model of the tensegrity column for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and numerical mode shapes are used to identify their paired modes. Natural frequencies and mode shapes of the first 15 elastic modes of the tensegrity column are identified from the experiment, which include modes of the overall structure and its cable members. These identified modes can be classified into five mode groups depending on their types. Five modes are paired between experimental and numerical results with MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The non-contact 3D vibration measurement approach presented in this work can measure responses of nodal points, as well as deformations of cable and strut members, of the tensegrity column, and allows accurate estimation of its 3D full-field modal parameters.more » « less
-
Abstract Tensegrity structures become important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on their dynamic analyses mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study proposes a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer is used with a mirror for extending its field of view to measure full-field vibration of a novel three-strut metal tensegrity column with free boundaries. Tensions and axial stiffnesses of its cable members are determined using natural frequencies of their transverse and longitudinal modes, respectively, to build its theoretical model for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and theoretical mode shapes are used to identify their paired modes. Modal parameters of the first 15 elastic modes of the tensegrity column identified from the experiment, including those of the overall structure and its cable members, can be classified into five mode groups depending on their types. Modes paired between experimental and theoretical results have MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The proposed non-contact 3D vibration measurement approach allows accurate estimation of 3D full-field modal parameters of the tensegrity column.more » « less
-
Vibration energy is becoming a significant alternative solution for energy generation. Recently, a great deal of research has been conducted on how to harvest energy from vibration sources ranging from ocean waves to human motion to microsystems. In this paper, a theoretical model of a piecewise-linear (PWL) nonlinear vibration harvester that has potential applications in variety of fields is proposed and numerically investigated. This new technique enables automatic frequency tunability in the energy harvester by controlling the gap size in the PWL oscillator so that it is able to adapt to changes in excitations. To optimize the performance of the proposed system, a control method combining the response prediction, signal measurement and gap adjustment mechanism is proposed in this paper. This new energy harvester not only overcomes the limitation of traditional linear energy harvesters that can only provide the maximum power generation efficiency over a narrow frequency range but also improves the performance of current nonlinear energy harvesters that are not as efficient as linear energy harvesters at resonance. The proposed system is demonstrated in several case studies to illustrate its effectiveness for a number of different excitations.more » « less
-
Abstract The inerter pendulum vibration absorber (IPVA) is integrated between a spar and an annulus floater using a ball-screw mechanism to study its wave energy conversion potential. Hydrodynamic stiffness, added mass, and radiation damping effects on the spar-floater system are characterized using the boundary element method. It is found that a 1:2 internal resonance via a period-doubling bifurcation in the system is responsible for nonlinear energy transfer between the spar-floater system and the pendulum vibration absorber. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable due to the 1:2 internal resonance phenomenon. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the first natural frequency of the system. The IPVA system when integrated with the spar-floater system is shown to outperform a linear coupling between the spar and the floater both in terms of the response amplitude operator (RAO) of the spar and one measure of the energy conversion potential of the system. Finally, experiments are performed on the IPVA system integrated with single-degree-of-freedom system (without any hydrodynamic effects) to observe the 1:2 internal resonance phenomenon and the nonlinear energy transfer between the primary mass and the pendulum vibration absorber. It is shown experimentally that the IPVA system outperforms a linear benchmark in terms of vibration suppression due to the energy transfer phenomenon.more » « less
An official website of the United States government

