skip to main content


Title: Scarlet Spectra: Two Red L Dwarfs Revealed by SOAR
Abstract

We present the analysis of two unusually red L dwarfs, CWISE J075554.14−325956.3 (W0755−3259) and CWISE J165909.91−351108.5 (W1659−3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the Southern Astrophysical Research Telescope. We classify W0755−3259 as an L7 very low-gravity dwarf, exhibiting extreme redness with a characteristic peakedH-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659-3511 as a red L7 field-gravity dwarf, with a more roundedH-band peak and spectral indices that support a normal gravity designation. W1659−3511 is noticeably fainter than W0755−3259, and the roundedH-band of W1659−3511 may be evidence of CH4absorption.

 
more » « less
NSF-PAR ID:
10429993
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
7
Issue:
7
ISSN:
2515-5172
Format(s):
Medium: X Size: Article No. 144
Size(s):
["Article No. 144"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.

     
    more » « less
  2. Abstract

    We present the discovery of CWISE J050626.96+073842.4 (CWISE J0506+0738), an L/T transition dwarf with extremely red near-infrared colors discovered through the Backyard Worlds: Planet 9 citizen science project. Photometry from UKIRT and CatWISE give a (JK)MKOcolor of 2.97 ± 0.03 mag and aJMKO− W2 color of 4.93 ± 0.02 mag, making CWISE J0506+0738 the reddest known free-floating L/T dwarf in both colors. We confirm the extremely red nature of CWISE J0506+0738 using Keck/NIRES near-infrared spectroscopy and establish that it is a low-gravity, late-type L/T transition dwarf. The spectrum of CWISE J0506+0738 shows possible signatures of CH4absorption in its atmosphere, suggesting a colder effective temperature than other known, young, red L dwarfs. We assign a preliminary spectral type for this source of L8γ–T0γ. We tentatively find that CWISE J0506+0738 is variable at 3–5μm based on multiepoch WISE photometry. Proper motions derived from follow-up UKIRT observations combined with a radial velocity from our Keck/NIRES spectrum and a photometric distance estimate indicate a strong membership probability in theβPic moving group. A future parallax measurement will help to establish a more definitive moving group membership for this unusual object.

     
    more » « less
  3. ABSTRACT

    In recent years, some extremely red brown dwarfs have been discovered. They were believed to have a low surface gravity, but many of their spectral characteristics are similar to those of high-surface-gravity brown dwarfs, showing that the spectral characteristics of young brown dwarfs are poorly understood. We aim to test surface-gravity indicators in late-M and early-L brown dwarf spectra using data obtained with the X-shooter spectrograph at the Very Large Telescope. We select a benchmark sample of brown dwarf members of Chamaeleon I (∼2 Myr), Upper Scorpius (5−10 Myr), the Pleiades (132 ± 27 Myr) and Praesepe (590−790 Myr) with well-constrained ages and similar metallicities. We provide a consistent spectral classification of the sample in the optical and in the near-infrared. We measure the equivalent widths of their alkali lines, finding that they have a moderate correlation with age, especially for objects with spectral types M8 and later. We use spectral indices defined in the literature to estimate surface gravity, finding that their gravity assignment is accurate for 75 per cent of our sample. We investigate the correlation between red colour and age, finding that after ∼10 Myr, the colour does not change significantly for our sample with spectral types M6.0–L3.0. In this case, the red colours might be associated with circumstellar discs, ring structures, extinction, or viewing angle. Finally, we calculate the bolometric luminosity, and J and K bolometric corrections for our sample. We find that six objects are overluminous compared with other members of the same association. These objects are flagged as binary candidates by the Gaia survey.

     
    more » « less
  4. Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1 σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS ( J – K s = 2.72), low surface gravity source that we classify as L6–L8 γ . Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are all consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s −2 , and a mass of 15 ± 5 M Jup . We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess. 
    more » « less
  5. ABSTRACT

    Analysis of all archival 5–14 micron spectra of field ultracool dwarfs from the Infrared Spectrograph on the Spitzer Space Telescope has shown that absorption by silicates in the 8–11 micron region is seen in most L-type (1300 to 2200 K) dwarfs. The absorption is caused by silicate-rich clouds in the atmospheres of L dwarfs and is strongest at L4–L6 spectral types. Herein we compare averages of the mid-infrared silicate absorption signatures of L3–L7 dwarfs that have low (≲104.5 cm s−2) versus high (≳105 cm s−2) surface gravity. We find that the silicate absorption feature is sensitive to surface gravity, with young atmospheres having a broader, redder, and more asymmetric absorption profile. This indicates a difference in grain size and composition between dust condensates in young and old mid-L dwarfs. The mean silicate absorption profile of low-gravity mid-L dwarfs matches expectations for ∼1 micron-sized amorphous iron- and magnesium-bearing pyroxene (MgxFe1 − xSiO3) grains. High-gravity mid-L dwarfs have silicate absorption better represented by smaller (≲0.1 μm) and more volatile amorphous enstatite (MgSiO3) or SiO grains. This is the first direct spectroscopic evidence for gravity-dependent sedimentation of dust condensates in ultracool atmospheres. It confirms theoretical expectations for lower sedimentation efficiencies in low-gravity atmospheres and independently confirms their increased dustiness.

     
    more » « less