skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CWISE J105512.11+544328.3: A Nearby Y Dwarf Spectroscopically Confirmed with Keck/NIRES
Abstract Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.  more » « less
Award ID(s):
2219090 2009136 2238468
PAR ID:
10474175
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
958
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 94
Size(s):
Article No. 94
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the discovery of CWISE J050626.96+073842.4 (CWISE J0506+0738), an L/T transition dwarf with extremely red near-infrared colors discovered through the Backyard Worlds: Planet 9 citizen science project. Photometry from UKIRT and CatWISE give a (J−K)MKOcolor of 2.97 ± 0.03 mag and aJMKO− W2 color of 4.93 ± 0.02 mag, making CWISE J0506+0738 the reddest known free-floating L/T dwarf in both colors. We confirm the extremely red nature of CWISE J0506+0738 using Keck/NIRES near-infrared spectroscopy and establish that it is a low-gravity, late-type L/T transition dwarf. The spectrum of CWISE J0506+0738 shows possible signatures of CH4absorption in its atmosphere, suggesting a colder effective temperature than other known, young, red L dwarfs. We assign a preliminary spectral type for this source of L8γ–T0γ. We tentatively find that CWISE J0506+0738 is variable at 3–5μm based on multiepoch WISE photometry. Proper motions derived from follow-up UKIRT observations combined with a radial velocity from our Keck/NIRES spectrum and a photometric distance estimate indicate a strong membership probability in theβPic moving group. A future parallax measurement will help to establish a more definitive moving group membership for this unusual object. 
    more » « less
  2. Abstract While stars are often found in binary systems, brown dwarf binaries are much rarer. Brown dwarf–brown dwarf pairs are typically difficult to resolve because they often have very small separations. Using brown dwarfs discovered with data from the Wide-field Infrared Survey Explorer (WISE) via the Backyard Worlds: Planet 9 citizen science project, we inspected other, higher-resolution, sky surveys for overlooked cold companions. During this process, we discovered the brown dwarf binary system CWISE J0146−0508AB, which we find has a very small chance alignment probability based on the similar proper motions of the components of the system. Using follow-up near-infrared spectroscopy with Keck/NIRES, we determined component spectral types of L4 and L8 (blue), making CWISE J0146−0508AB one of only a few benchmark systems with a blue L dwarf. At an estimated distance of ∼40 pc, CWISE J0146−0508AB has a projected separation of ∼129 au, making it the widest-separation brown dwarf pair found to date. We find that such a wide separation for a brown dwarf binary may imply formation in a low-density star-forming region. 
    more » « less
  3. Abstract We present the analysis of two unusually red L dwarfs, CWISE J075554.14−325956.3 (W0755−3259) and CWISE J165909.91−351108.5 (W1659−3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the Southern Astrophysical Research Telescope. We classify W0755−3259 as an L7 very low-gravity dwarf, exhibiting extreme redness with a characteristic peakedH-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659-3511 as a red L7 field-gravity dwarf, with a more roundedH-band peak and spectral indices that support a normal gravity designation. W1659−3511 is noticeably fainter than W0755−3259, and the roundedH-band of W1659−3511 may be evidence of CH4absorption. 
    more » « less
  4. Abstract We have used the UKIRT Hemisphere Survey combined with the UKIDSS Galactic Cluster Survey, the UKIDSS Galactic Plane Survey, and the CatWISE2020 catalog to search for new substellar members of the nearest open cluster to the Sun, the Hyades. Eight new substellar Hyades candidate members were identified and observed with the Gemini/GNIRS near-infrared spectrograph. All eight objects are confirmed as brown dwarfs with spectral types ranging from L6 to T5, with two objects showing signs of spectral binarity and/or variability. A kinematic analysis demonstrates that all eight new discoveries likely belong to the Hyades cluster, with future radial velocity and parallax measurements needed to confirm their membership. CWISE J042356.23+130414.3, with a spectral type of T5, would be the coldest (Teff≈ 1100 K) and lowest-mass (M≈ 30MJup) free-floating member of the Hyades yet discovered. We further find that high-probability substellar Hyades members from this work and previous studies have redder near-infrared colors than field-age brown dwarfs, potentially due to lower surface gravities and supersolar metallicities. 
    more » « less
  5. Abstract We present three new brown dwarf spectral-binary candidates: CWISE J072708.09−360729.2, CWISE J103604.84−514424.4, and CWISE J134446.62−732053.9, discovered by citizen scientists through the Backyard Worlds: Planet 9 project. Follow-up near-infrared spectroscopy shows that each of these objects is poorly fit by a single near-infrared standard. We constructed binary templates and found significantly better fits, with component types of L7+T4 for CWISE J072708.09−360729.2, L7+T4 for CWISE J103604.84−514424.4, and L7+T7 for CWISE J134446.62−732053.9. However, further investigation of available spectroscopic indices for evidence of binarity and large amplitude variability suggests that CWISE J072708.09−360729.2 may instead be a strong variability candidate. Our analysis offers tentative evidence and characterization of these peculiar brown dwarf sources, emphasizing their value as promising targets for future high-resolution imaging or photometric variability studies. 
    more » « less