skip to main content


Title: CWISE J105512.11+544328.3: A Nearby Y Dwarf Spectroscopically Confirmed with Keck/NIRES
Abstract

Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.

 
more » « less
Award ID(s):
2219090 2009136 2238468
PAR ID:
10474175
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
958
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 94
Size(s):
Article No. 94
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the discovery of CWISE J050626.96+073842.4 (CWISE J0506+0738), an L/T transition dwarf with extremely red near-infrared colors discovered through the Backyard Worlds: Planet 9 citizen science project. Photometry from UKIRT and CatWISE give a (JK)MKOcolor of 2.97 ± 0.03 mag and aJMKO− W2 color of 4.93 ± 0.02 mag, making CWISE J0506+0738 the reddest known free-floating L/T dwarf in both colors. We confirm the extremely red nature of CWISE J0506+0738 using Keck/NIRES near-infrared spectroscopy and establish that it is a low-gravity, late-type L/T transition dwarf. The spectrum of CWISE J0506+0738 shows possible signatures of CH4absorption in its atmosphere, suggesting a colder effective temperature than other known, young, red L dwarfs. We assign a preliminary spectral type for this source of L8γ–T0γ. We tentatively find that CWISE J0506+0738 is variable at 3–5μm based on multiepoch WISE photometry. Proper motions derived from follow-up UKIRT observations combined with a radial velocity from our Keck/NIRES spectrum and a photometric distance estimate indicate a strong membership probability in theβPic moving group. A future parallax measurement will help to establish a more definitive moving group membership for this unusual object.

     
    more » « less
  2. Abstract

    Mapping out the populations of thick disk and halo brown dwarfs is important for understanding the metallicity dependence of low-temperature atmospheres and the substellar mass function. Recently, a new population of cold and metal-poor brown dwarfs has been discovered, withTeff≲ 1400 K and metallicity ≲−1 dex. This population includes what may be the first known “extreme T-type subdwarfs” and possibly the first Y-type subdwarf, WISEA J153429.75−104303.3. We have conducted a GeminiYJHK/Ksphotometric follow-up campaign targeting potentially metal-poor T and Y dwarfs, utilizing the GNIRS and Flamingos-2 instruments. We present 14 near-infrared photometric detections of eight unique targets: six T subdwarf candidates, one moderately metal-poor Y dwarf candidate, and one Y subdwarf candidate. We have obtained the first-ever ground-based detection of the highly anomalous object WISEA J153429.75−104303.3. The F110W −Jcolor of WISEA J153429.75−104303.3 is significantly bluer than that of other late T and Y dwarfs, indicating that WISEA J153429.75−104303.3 has an unusual spectrum in the 0.9–1.4μm wavelength range which encompasses theJ-band peak. OurJ-band detection of WISEA J153429.75−104303.3 and corresponding model comparisons suggest a subsolar metallicity and temperature of 400–550 K for this object. JWST spectroscopic follow-up at near-infrared and mid-infrared wavelengths would allow us to better understand the spectral peculiarities of WISEA J153429.75−104303.3, assess its physical properties, and conclusively determine whether or not it is the first Y-type subdwarf.

     
    more » « less
  3. Abstract While stars are often found in binary systems, brown dwarf binaries are much rarer. Brown dwarf–brown dwarf pairs are typically difficult to resolve because they often have very small separations. Using brown dwarfs discovered with data from the Wide-field Infrared Survey Explorer (WISE) via the Backyard Worlds: Planet 9 citizen science project, we inspected other, higher-resolution, sky surveys for overlooked cold companions. During this process, we discovered the brown dwarf binary system CWISE J0146−0508AB, which we find has a very small chance alignment probability based on the similar proper motions of the components of the system. Using follow-up near-infrared spectroscopy with Keck/NIRES, we determined component spectral types of L4 and L8 (blue), making CWISE J0146−0508AB one of only a few benchmark systems with a blue L dwarf. At an estimated distance of ∼40 pc, CWISE J0146−0508AB has a projected separation of ∼129 au, making it the widest-separation brown dwarf pair found to date. We find that such a wide separation for a brown dwarf binary may imply formation in a low-density star-forming region. 
    more » « less
  4. Abstract

    We present Gemini Observatory follow-upJ-band andK-band photometry for a sample of 16 T/Y dwarf candidates discovered by the Backyard Worlds: Planet 9 citizen science project. The Gemini observations were taken with Gemini-North using the Near-Infrared Imager instrument between 2017 September and 2018 March. Obtaining near-infrared photometry of very cold brown dwarfs is important for enabling and prioritizing future spectroscopic follow-up, particularly in the context of JWST spectroscopy of T and Y dwarfs.

     
    more » « less
  5. Abstract

    We present the analysis of two unusually red L dwarfs, CWISE J075554.14−325956.3 (W0755−3259) and CWISE J165909.91−351108.5 (W1659−3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the Southern Astrophysical Research Telescope. We classify W0755−3259 as an L7 very low-gravity dwarf, exhibiting extreme redness with a characteristic peakedH-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659-3511 as a red L7 field-gravity dwarf, with a more roundedH-band peak and spectral indices that support a normal gravity designation. W1659−3511 is noticeably fainter than W0755−3259, and the roundedH-band of W1659−3511 may be evidence of CH4absorption.

     
    more » « less